

Materials and Mechanics Practice (MANUAL) PHY109P

B. Tech: July---November 2016

IIITD&M Kancheepuram

Chennai – 600 127

CYCLE – I (LIST OF EXPERIMENTS)

1. TORSIONAL PENDULUM
2. BAR PENDULUM
3. STRAIN GAUGE
4. TENSILE TEST
5. FRICTION

CYCLE – II

6. CREEP TEST
7. THREE POINT BEND TEST
8. BUCKLING TEST
9. MICROSTRUCTURE
10. HARDNESS TEST AND TORQUE MEASUREMNET

EXPT NO WEEK \	1	2	3	4	5
I	BL ₁ 1 – BL ₁ 5	BL ₁ 6 – BL ₁ 10	BL ₁ 11 – BL ₁ 15	BL ₁ 16 – BL ₁ 20	BL ₁ 21 – BL ₁ 25
	BL ₂ 1 – BL ₂ 5	BL ₂ 6 – BL ₂ 10	BL ₂ 11 – BL ₂ 15	BL ₂ 16 – BL ₂ 20	BL ₂ 21 – BL ₂ 25
	BL ₃ 1 – BL ₃ 5	BL ₃ 6 – BL ₃ 10	BL ₃ 11 – BL ₃ 15	BL ₃ 16 – BL ₃ 20	BL ₃ 21 – BL ₃ 25
	BL ₄ 1 – BL ₄ 5	BL ₄ 6 – BL ₄ 10	BL ₄ 11 – BL ₄ 15	BL ₄ 16 – BL ₄ 20	BL ₄ 21 – BL ₄ 25
	BL ₅ 1 – BL ₅ 5	BL ₅ 6 – BL ₅ 10	BL ₅ 11 – BL ₅ 15	BL ₅ 16 – BL ₅ 20	BL ₅ 21 – BL ₅ 25
	KL ₁ 1 – KL ₁ 5	KL ₁ 6 – KL ₁ 10	KL ₁ 11 – KL ₁ 15	KL ₁ 16 – KL ₁ 20	KL ₁ 21 – KL ₁ 25
	KL ₂ 1 – KL ₂ 5	KL ₂ 6 – KL ₂ 10	KL ₂ 11 – KL ₂ 15	KL ₂ 16 – KL ₂ 20	KL ₂ 21 – KL ₂ 25
II	BL ₁ 21 – BL ₁ 25	BL ₁ 1 – BL ₁ 5	BL ₁ 6 – BL ₁ 10	BL ₁ 11 – BL ₁ 15	BL ₁ 16 – BL ₁ 20
	BL ₂ 21 – BL ₂ 25	BL ₂ 1 – BL ₂ 5	BL ₂ 6 – BL ₂ 10	BL ₂ 11 – BL ₂ 15	BL ₂ 16 – BL ₂ 20
	BL ₃ 21 – BL ₃ 25	BL ₃ 1 – BL ₃ 5	BL ₃ 6 – BL ₃ 10	BL ₃ 11 – BL ₃ 15	BL ₃ 16 – BL ₃ 20
	BL ₄ 21 – BL ₄ 25	BL ₄ 1 – BL ₄ 5	BL ₄ 6 – BL ₄ 10	BL ₄ 11 – BL ₄ 15	BL ₄ 16 – BL ₄ 20
	BL ₅ 21 – BL ₅ 25	BL ₅ 1 – BL ₅ 5	BL ₅ 6 – BL ₅ 10	BL ₅ 11 – BL ₅ 15	BL ₅ 16 – BL ₅ 20
	KL ₁ 21 – KL ₁ 25	KL ₁ 1 – KL ₁ 5	KL ₁ 6 – KL ₁ 10	KL ₁ 11 – KL ₁ 15	KL ₁ 16 – KL ₁ 20
	KL ₂ 21 – KL ₂ 25	KL ₂ 1 – KL ₂ 5	KL ₂ 6 – KL ₂ 10	KL ₂ 11 – KL ₂ 15	KL ₂ 16 – KL ₂ 20
III	BL ₁ 16 – BL ₁ 20	BL ₁ 21 – BL ₁ 25	BL ₁ 1 – BL ₁ 5	BL ₁ 6 – BL ₁ 10	BL ₁ 11 – BL ₁ 15
	BL ₂ 16 – BL ₂ 20	BL ₂ 21 – BL ₂ 25	BL ₂ 1 – BL ₂ 5	BL ₂ 6 – BL ₂ 10	BL ₂ 11 – BL ₂ 15
	BL ₃ 16 – BL ₃ 20	BL ₃ 21 – BL ₃ 25	BL ₃ 1 – BL ₃ 5	BL ₃ 6 – BL ₃ 10	BL ₃ 11 – BL ₃ 15
	BL ₄ 16 – BL ₄ 20	BL ₄ 21 – BL ₄ 25	BL ₄ 1 – BL ₄ 5	BL ₄ 6 – BL ₄ 10	BL ₄ 11 – BL ₄ 15
	BL ₅ 16 – BL ₅ 20	BL ₅ 21 – BL ₅ 25	BL ₅ 1 – BL ₅ 5	BL ₅ 6 – BL ₅ 10	BL ₅ 11 – BL ₅ 15
	KL ₁ 16 – KL ₁ 20	KL ₁ 21 – KL ₁ 25	KL ₁ 1 – KL ₁ 5	KL ₁ 6 – KL ₁ 10	KL ₁ 11 – KL ₁ 15
	KL ₂ 16 – KL ₂ 20	KL ₂ 21 – KL ₂ 25	KL ₂ 1 – KL ₂ 5	KL ₂ 6 – KL ₂ 10	KL ₂ 11 – KL ₂ 15
IV	BL ₁ 11 – BL ₁ 15	BL ₁ 16 – BL ₁ 20	BL ₁ 21 – BL ₁ 25	BL ₁ 1 – BL ₁ 5	BL ₁ 6 – BL ₁ 10
	BL ₂ 11 – BL ₂ 15	BL ₂ 16 – BL ₂ 20	BL ₂ 21 – BL ₂ 25	BL ₂ 1 – BL ₂ 5	BL ₂ 6 – BL ₂ 10
	BL ₃ 11 – BL ₃ 15	BL ₃ 16 – BL ₃ 20	BL ₃ 21 – BL ₃ 25	BL ₃ 1 – BL ₃ 5	BL ₃ 6 – BL ₃ 10
	BL ₄ 11 – BL ₄ 15	BL ₄ 16 – BL ₄ 20	BL ₄ 21 – BL ₄ 25	BL ₄ 1 – BL ₄ 5	BL ₄ 6 – BL ₄ 10
	BL ₅ 11 – BL ₅ 15	BL ₅ 16 – BL ₅ 20	BL ₅ 21 – BL ₅ 25	BL ₅ 1 – BL ₅ 5	BL ₅ 6 – BL ₅ 10
	KL ₁ 11 – KL ₁ 15	KL ₁ 16 – KL ₁ 20	KL ₁ 21 – KL ₁ 25	KL ₁ 1 – KL ₁ 5	KL ₁ 6 – KL ₁ 10
	KL ₂ 11 – KL ₂ 15	KL ₂ 16 – KL ₂ 20	KL ₂ 21 – KL ₂ 25	KL ₂ 1 – KL ₂ 5	KL ₂ 6 – KL ₂ 10
V	BL ₁ 6 – BL ₁ 10	BL ₁ 11 – BL ₁ 15	BL ₁ 16 – BL ₁ 20	BL ₁ 21 – BL ₁ 25	BL ₁ 1 – BL ₁ 5
	BL ₂ 6 – BL ₂ 10	BL ₂ 11 – BL ₂ 15	BL ₂ 16 – BL ₂ 20	BL ₂ 21 – BL ₂ 25	BL ₂ 1 – BL ₂ 5
	BL ₃ 6 – BL ₃ 10	BL ₃ 11 – BL ₃ 15	BL ₃ 16 – BL ₃ 20	BL ₃ 21 – BL ₃ 25	BL ₃ 1 – BL ₃ 5
	BL ₄ 6 – BL ₄ 10	BL ₄ 11 – BL ₄ 15	BL ₄ 16 – BL ₄ 20	BL ₄ 21 – BL ₄ 25	BL ₄ 1 – BL ₄ 5
	BL ₅ 6 – BL ₅ 10	BL ₅ 11 – BL ₅ 15	BL ₅ 16 – BL ₅ 20	BL ₅ 21 – BL ₅ 25	BL ₅ 1 – BL ₅ 5
	KL ₁ 6 – KL ₁ 10	KL ₁ 11 – KL ₁ 15	KL ₁ 16 – KL ₁ 20	KL ₁ 21 – KL ₁ 25	KL ₁ 1 – KL ₁ 5
	KL ₂ 6 – KL ₂ 10	KL ₂ 11 – KL ₂ 15	KL ₂ 16 – KL ₂ 20	KL ₂ 21 – KL ₂ 25	KL ₂ 1 – KL ₂ 5

• Batches BL₁, BL₂, BL₃, BL₄, BL₅ are – IIITDM Kancheepuram

** Batches KL₁, KL₂ are – IIITDM Kurnool

IIITDM KANCHEEPURAM – BATCH BL1

S.No	Roll No.	Group No.	Day	S.No	Roll No.	Group No.	
1	COE16B001	BL₁ – 1	MONDAY (AN)	21	COE16B023	BL₁ – 14	
2	COE16B002			22	COE16B024	BL₁ – 15	
3	COE16B003	BL₁ – 2		23	COE16B025		
4	COE16B004	BL₁ – 3		24	COE16B026	BL₁ – 16	
5	COE16B005			25	COE16B027	BL₁ – 17	
6	COE16B006	BL₁ – 4		26	COE16B028		
7	COE16B007	BL₁ – 5		27	COE16B029	BL₁ – 18	
8	COE16B008			28	COE16B030	BL₁ – 19	
9	COE16B011	BL₁ – 6		29	COE16B031		
10	COE16B012	BL₁ – 7		30	COE16B032	BL₁ – 20	
11	COE16B013			31	COE16B033	BL₁ – 21	
12	COE16B014	BL₁ – 8		32	COE16B034		
13	COE16B015	BL₁ – 9		33	COE16B035	BL₁ – 22	
14	COE16B016			34	COE16B036	BL₁ – 23	
16	COE16B017	BL₁ – 10		35	COE16B037		
16	COE16B018	BL₁ – 11		36	COE16B038	BL₁ – 24	
17	COE16B019			37	COE16B039	BL₁ – 25	
18	COE16B020	BL₁ – 12		38	COE16B040		
19	COE16B021	BL₁ – 13		39			
20	COE16B022			40			

IIITDM KANCHEEPURAM – BATCH BL5

S.No	Roll No.	Group No.	Day	S.No	Roll No.	Group No.
1	MSM16B001	BL₅ – 1		26	MSM16B028	BL₅ – 13
2	MSM16B002			27	MSM16B029	BL₅ – 14
3	MSM16B003	BL₅ – 2		28	MSM16B030	
4	MSM16B005			29	MSM16B031	BL₅ – 15
5	MSM16B006	BL₅ – 3		30	MSM16B032	
6	MSM16B007			31	MSM16B034	BL₅ – 16
7	MSM16B008	BL₅ – 4		32	MSM16B035	
8	MSM16B009			33	MSM16B036	BL₅ – 17
9	MSM16B010	BL₅ – 5		34	MFD16I001	
10	MSM16B011			35	MFD16I002	BL₅ – 18
11	MSM16B012	BL₅ – 6		36	MFD16I003	
12	MSM16B013			37	MFD16I004	BL₅ – 19
13	MSM16B014	BL₅ – 7		38	MFD16I005	
14	MSM16B015			39	MFD16I006	BL₅ – 20
16	MSM16B016	BL₅ – 8		40	MFD16I007	
16	MSM16B017			41	MFD16I008	BL₅ – 21
17	MSM16B018	BL₅ – 9		42	MFD16I010	
18	MSM16B019			43	MFD16I011	BL₅ – 22
19	MSM16B020	BL₅ – 10		44	MFD16I012	
20	MSM16B021			45	MFD16I014	BL₅ – 23
21	MSM16B022	BL₅ – 11		46	MFD16I015	
22	MSM16B024			47	MFD16I016	BL₅ – 24
23	MSM16B025	BL₅ – 12		48	MFD16I017	
24	MSM16B026			49	MFD16I018	BL₅ – 25
25	MSM16B027	BL₅ – 13		50	MFD16I019	

TUESDAY (AN)

IIITDM KANCHEEPURAM – BATCH BL4

S.No	Roll No.	Group No.	Day	S.No	Roll No.	Group No.
1	MDM16B001	BL ₄ – 1		27	MDM16B028	BL ₄ – 13
2	MDM16B002			28	MDM16B029	BL ₄ – 14
3	MDM16B003	BL ₄ – 2		29	MDM16B030	
4	MDM16B004			30	MDM16B031	BL ₄ – 15
5	MDM16B005	BL ₄ – 3		31	MDM16B032	
6	MDM16B006			32	MDM16B033	BL ₄ – 16
7	MDM16B007	BL ₄ – 4		33	MDM16B034	
8	MDM16B008			34	MDM16B035	BL ₄ – 17
9	MDM16B009	BL ₄ – 5		35	MDM16B036	
10	MDM16B010			36	MDM16B037	BL ₄ – 18
11	MDM16B011	BL ₄ – 6		37	MDM16B038	
12	MDM16B012			38	MDM16B039	BL ₄ – 19
13	MDM16B013	BL ₄ – 7		39	MDM16B040	
14	MDM16B014			40	MPD16I001	BL ₄ – 20
16	MDM16B015	BL ₄ – 8		41	MPD16I002	
16	MDM16B016			42	MPD16I003	BL ₄ – 21
17	MDM16B017	BL ₄ – 9		43	MPD16I004	
18	MDM16B018			44	MPD16I005	BL ₄ – 22
19	MDM16B019	BL ₄ – 10		45	MPD16I006	
20	MDM16B020			46	MPD16I007	BL ₄ – 23
21	MDM16B021	BL ₄ – 11		47	MPD16I009	
22	MDM16B022			48	MPD16I010	BL ₄ – 24
23	MDM16B024	BL ₄ – 12		49	MPD16I011	
24	MDM16B025			50	MPD16I012	BL ₄ – 25
25	MDM16B026	BL ₄ – 13		51	MPD16I014	
26	MDM16B027			52	MPD16I015	

WEDNESDAY (FN)

IIITDM KANCHEEPURAM – BATCH BL3

S.No	Roll No.	Group No.	Day	S.No	Roll No.	Group No.
1	EDM16B001	BL₃ – 1	WEDNESDAY (AN)	27	EDM16B027	BL₃ – 13
2	EDM16B002			28	EDM16B028	BL₃ – 14
3	EDM16B003	BL₃ – 2		29	EDM16B029	
4	EDM16B004			30	EDM16B030	BL₃ – 15
5	EDM16B005	BL₃ – 3		31	EDM16B031	
6	EDM16B006			32	EDM16B032	BL₃ – 16
7	EDM16B007	BL₃ – 4		33	EDM16B033	
8	EDM16B008			34	EDM16B034	BL₃ – 17
9	EDM16B009	BL₃ – 5		35	EDM16B035	
10	EDM16B010			36	EDM16B036	BL₃ – 18
11	EDM16B011	BL₃ – 6		37	EDM16B038	
12	EDM16B012			38	EDM16B039	BL₃ – 19
13	EDM16B013	BL₃ – 7		39	ESD16I001	
14	EDM16B014			40	ESD16I003	BL₃ – 20
16	EDM16B015	BL₃ – 8		41	ESD16I004	
16	EDM16B016			42	ESD16I005	BL₃ – 21
17	EDM16B017	BL₃ – 9		43	ESD16I006	
18	EDM16B018			44	ESD16I007	BL₃ – 22
19	EDM16B019	BL₃ – 10		45	ESD16I008	
20	EDM16B020			46	ESD16I009	BL₃ – 23
21	EDM16B021	BL₃ – 11		47	ESD16I011	
22	EDM16B022			48	ESD16I012	BL₃ – 24
23	EDM16B023	BL₃ – 12		49	ESD16I013	
24	EDM16B024			50	ESD16I014	BL₃ – 25
25	EDM16B025	BL₃ – 13		51	ESD16I015	
26	EDM16B026			52		

IIITDM KANCHEEPURAM – BATCH BL2

S.No	Roll No	Group No.	Day	S.No	Roll No	Group No.
1	CED16I002	BL₂ – 1		30	CED16I031	BL₂ – 13
2	CED16I003			31	CED16I032	BL₂ – 14
3	CED16I004	BL₂ – 2		32	CED16I033	
4	CED16I005			33	CED16I034	BL₂ – 15
5	CED16I006	BL₂ – 3		34	CED16I035	
6	CED16I007			35	CED16I036	BL₂ – 16
7	CED16I008	BL₂ – 4		36	CED16I037	
8	CED16I009			37	CED16I038	BL₂ – 17
9	CED16I010	BL₂ – 5		38	CED16I039	
10	CED16I011			39	CED16I041	BL₂ – 18
11	CED16I012	BL₂ – 6		40	CED16I042	
12	CED16I013			41	EVD16I001	BL₂ – 19
13	CED16I014	BL₂ – 7		42	EVD16I002	
14	CED16I015			43	EVD16I003	BL₂ – 20
16	CED16I016	BL₂ – 8		44	EVD16I004	
16	CED16I017			45	EVD16I005	BL₂ – 21
17	CED16I018	BL₂ – 9		46	EVD16I006	
18	CED16I019			47	EVD16I007	BL₂ – 22
19	CED16I020	BL₂ – 10		48	EVD16I008	
20	CED16I021			49	EVD16I009	BL₂ – 23
21	CED16I022	BL₂ – 11		50	EVD16I010	
22	CED16I023			51	EVD16I011	BL₂ – 24
23	CED16I024	BL₂ – 12		52	EVD16I012	
24	CED16I025			53	EVD16I013	BL₂ – 25
25	CED16I026	BL₂ – 13		54	EVD16I014	
26	CED16I027			55	EVD16I015	BL₂ – 26
27	CED16I028			56	EVD16I016	
28	CED16I029			57	EVD16I017	BL₂ – 27
29	CED16I030	BL₂ – 13		58	EVD16I018	

THURSDAY(AN)

IIITDM KURNOOL – BATCH 1

S.No	Roll No.	Group No.	Day	S.No	Roll No.	Group No.	
1	COE16B001	KL₁ – 1	MONDAY (FN)		COE16B026	KL₁ – 13	
2	COE16B002			26	COE16B027	KL₁ – 14	
3	COE16B003	KL₁ – 2		27	COE16B028		
4	COE16B004			28	COE16B029	KL₁ – 15	
5	COE16B005	KL₁ – 3		29	COE16B030		
6	COE16B006			30	COE16B031	KL₁ – 16	
7	COE16B007	KL₁ – 4		31	COE16B032		
8	COE16B008			32	COE16B033	KL₁ – 17	
9	COE16B009	KL₁ – 5		33	EDM16B001		
10	COE16B010			34	EDM16B002	KL₁ – 18	
11	COE16B011	KL₁ – 6		35	EDM16B003		
12	COE16B012			36	EDM16B004	KL₁ – 19	
13	COE16B013	KL₁ – 7		37	EDM16B006		
14	COE16B014			38	EDM16B008	KL₁ – 20	
16	COE16B016	KL₁ – 8		39	EDM16B009	KL₁ – 21	
16	COE16B017			40	EDM16B010		
17	COE16B018	KL₁ – 9		41	EDM16B011	KL₁ – 22	
18	COE16B019			42	EDM16B012		
19	COE16B020	KL₁ – 10		43	EDM16B013	KL₁ – 23	
20	COE16B021	KL₁ – 11		44	EDM16B014		
21	COE16B022			45	EDM16B015	KL₁ – 24	
22	COE16B023	KL₁ – 12		46	EDM16B016		
23	COE16B024			47	EDM16B017	KL₁ – 25	
24	COE16B025	KL₁ – 13		48	EDM16B018		

IITDM KURNOOL – BATCH 2

S.No	Roll No.	Group No.	Day	S.No	Roll No.	Group No.
1	EDM16B021	KL₂ – 1	FRIDAY (AN)	14	MDM16B008	KL₂ – 14
2	EDM16B022	KL₂ – 2		15	MDM16B009	KL₂ – 15
3	EDM16B024	KL₂ – 3		16	MDM16B010	KL₂ – 16
4	EDM16B025	KL₂ – 4		17	MDM16B011	KL₂ – 17
5		KL₂ – 5		18	MDM16B012	KL₂ – 18
6	MDM16B001	KL₂ – 6		19	MDM16B013	KL₂ – 19
7	MDM16B002	KL₂ – 7		20	MDM16B014	KL₂ – 20
8	MDM16B003	KL₂ – 8		21		KL₂ – 21
9	MDM16B004	KL₂ – 9		22	MDM16B015	KL₂ – 22
10	MDM16B005	KL₂ – 10		23	MDM16B016	KL₂ – 23
11		KL₂ – 11		24	MDM16B018	KL₂ – 24
12	MDM16B006	KL₂ – 12		25	MDM16B021	KL₂ – 25
13	MDM16B007	KL₂ – 13		26		

EX. NO.1: TORSIONAL PENDULUM

OBJECTIVE:

To find the modulus of rigidity (η) and torsional rigidity (C) of the given string.

APPARATUS REQUIRED:

Circular or rectangular discs suspended from a point using a metal wire about an axis passing through the middle of plate having largest area, two similar weights, a stop watch and meter scale.

BRIEF DISCUSSION AND RELEVANT FORMULA:

For an object under torsion torsional, restoring torque is proportional to the angular displacements. In practice, this will be true only for **small** angular displacements ' θ '.

$$\tau = I_{tot} \frac{d^2\theta}{dt^2} = -C\theta \quad (1)$$

The equation gives the time period of torsional oscillations of the system as,

$$T = 2\pi \sqrt{\frac{I_{tot}}{C}} = 2\pi \sqrt{\frac{I_o + 2 I_s + 2 m_s x^2}{C}} \quad (2)$$

I_o = moment of inertia of large disc (without any mass added to it)

I_s = moment of inertia of weight - about an axis passing through its/their own center of gravity, parallel to its/their length.

m_s = mass of each solid cylinder (weight)

x = distance of each weight from axis of suspension.

C = torsional rigidity of suspension wire - (couple per unit twist).

Fig.1

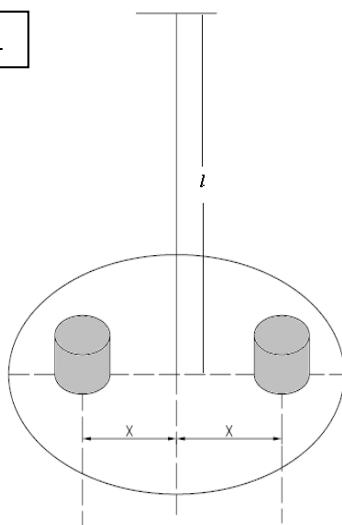
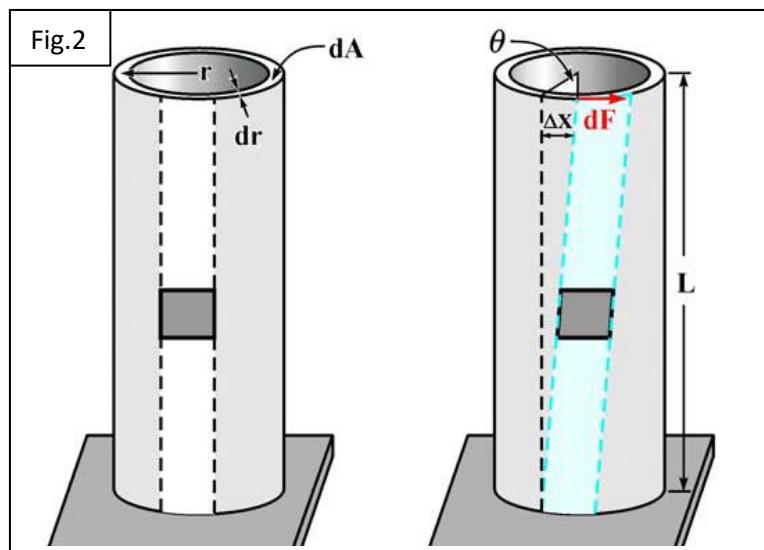



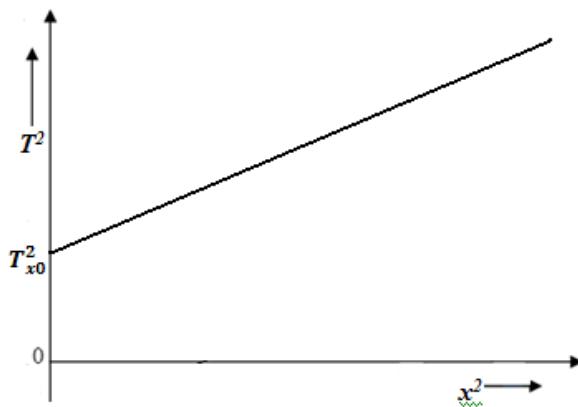
Fig.2

$$\text{Again from Fig.2, rigidity modulus } \eta = \frac{\left(\frac{dF}{\pi r^2} \right)}{\left(\frac{r\theta}{L} \right)} = \frac{l(r\eta)}{\pi r^4 \theta} = \frac{l\tau}{\pi r^4 \theta} \quad (3)$$

$$\text{We can write the magnitude of } C \text{ from (1) and (3), } C = \frac{\pi \eta r^4}{2 l} \quad (4)$$

Squaring (2), we get

$$T^2 = \frac{4\pi^2}{C} [I_o + 2I_s + 2m_s x^2] = \frac{8\pi^2 m_s x^2}{C} + \frac{4\pi^2 (I_o + 2I_s)}{C} \quad (5)$$


A graph is plotted between T^2 and x^2 . Fit a best - fit straight line to the data.

$$\text{For the straight line, slope } \frac{\Delta T^2}{\Delta x^2} = \frac{8\pi^2 m_s}{C} \text{ or } C = 8\pi^2 m_s \frac{\Delta x^2}{\Delta T^2} \quad (6)$$

Knowing, C from (6) one can calculate the rigidity modulus (η) from (4).

Note that :

- The suspension wire should be free from kinks.
- The system should be horizontal always.
- Solid weights must be identical.
- Oscillations should be purely rotational.
- The wire should not be twisted beyond elastic limits.
- The time period should be noted carefully taking the average of about ten periods.
- Make sure that the angular displacements are small.

The student must then compute,

Couple per unit twist of suspension wire C

Determination of I_s and I_0 : I_s and I_0 can be obtained by measuring corresponding time periods as mentioned below.

Let T_o = time period of oscillation of large disc alone.

T_x = time period of oscillations of large disc with masses at distance x .

T_{x0} = time period of oscillation of large disc with masses at $x = 0$, (obtained from graph – y intercept).

Putting these time periods in (5) , we will get a set of equations which will give us the following expressions:

$$I_0 = 2m_s x^2 \frac{T_0^2}{T_x^2 - T_{x0}^2} = \frac{2m_s T_0^2}{\text{slope}}$$

$$I_s = m_s x^2 \frac{T_{x0}^2 - T_0^2}{T_x^2 - T_{x0}^2} = \frac{m_s (T_{x0}^2 - T_0^2)}{\text{slope}}$$

OBSERVATIONS:

Mass of identical weights added, m_s = kg

Time period of disc with no masses T_o = sec (averaged over 10 cycles)

Y-intercept from graph T_{x0} = sec

TABLE: MEASURE THE TIME PERIOD

Distance of weight from axis of twist x (cm)	x^2 (cm ²)	Number of oscillations, n	Time taken t (sec)	Period $T = t / n$ (sec)	T^2 (sec ²)
x_1					
x_2					
x_3					
x_4					

RESULT: 1. Rigidity modulus of the wire, η =

2. Couple per unit twist, C =

3. Moment of Inertia of the disc, I_0 =

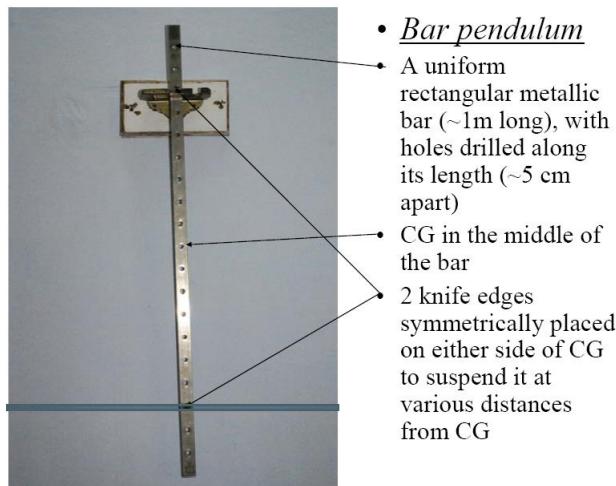
EX.NO. 2: BAR PENDULUM

OBJECTIVE:

1. To determine the acceleration due to gravity (g) using a bar pendulum.
2. To verify that there are two pivot points on either side of the centre of gravity (C.G.) about which the time period is the same.
3. To determine the radius of gyration of a bar pendulum by plotting a graph of time period of oscillation against the distance of the point of suspension from C.G.
4. To determine the length of the equivalent simple pendulum.

APPARATUS REQUIRED:

Bar Pendulum, Small metal wedge, Spirit level, Stop watch, Meter rod


THEORY:

A bar pendulum is the simplest form of compound pendulum. It is in the form of a rectangular bar (with its length much larger than the breadth and the thickness) with holes (for fixing the knife edges) drilled along its length at equal separation.

If a bar pendulum of mass M oscillates with a very small amplitude ϑ about a horizontal axis passing through it, then its angular acceleration ($d^2\vartheta/dt^2$) is proportional to the angular displacement ϑ . The motion is **simple harmonic** and the time period T is given by

$$T = 2\pi \sqrt{\frac{I}{Mgl}} \quad (1)$$

where I denotes the **moment of inertia** of the pendulum about the horizontal axis through its **center of suspension** and l is the distance between the center of suspension and C.G. of the

Photograph of a typical bar pendulum

Pendulum. According to the theorem of parallel axes, if I_G is the moment of inertia of the pendulum about an axis through C.G., then the moment of inertia I about a parallel axis at a distance l from C.G. is given by

$$\begin{aligned} I &= I_G + Ml^2 \\ &= Mk^2 + Ml^2 \end{aligned} \quad (2)$$

where k is the **radius of gyration** of the pendulum about the axis through C.G. Using

Equation (2) in Equation (1), we get $T = 2\pi \sqrt{\frac{Mk^2 + Ml^2}{Mgl}}$

$$T = 2\pi \sqrt{\frac{k^2 + l^2}{gl}} = 2\pi \sqrt{\frac{k^2/l + l}{g}} = 2\pi \sqrt{\frac{L}{g}} \quad (3)$$

where L is the length of the equivalent simple pendulum, given by

$$L = \left(\frac{k^2}{l} + l \right) \quad (4)$$

Therefore, from (1) and (4), $g = 4\pi^2 \frac{L}{T^2}$ (5)

Equation (4) is a quadratic equation for l , which must have two roots l_1 and l_2 (say) and follows, $l_1 + l_2 = L$ and $l_1 l_2 = k^2$ (6)

for any particular value of $I(l_1)$, there is a second point on the same side of C.G. and at a distance $I(k^2/l_1)$ from it, about which the pendulum will have the same time period. And the graph will look like:

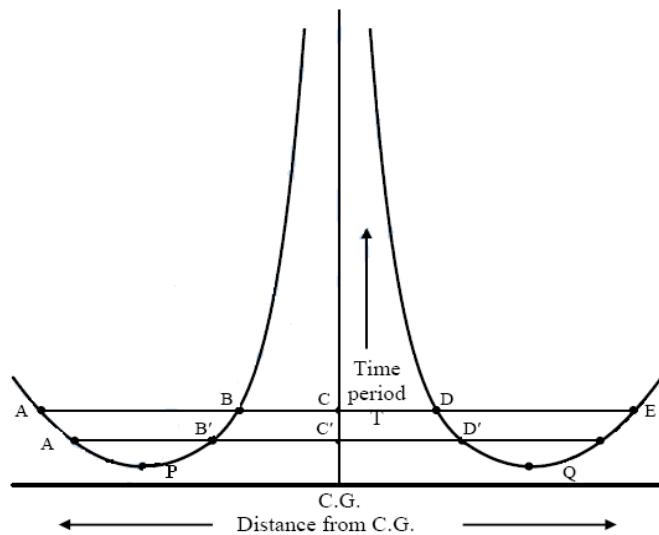


Figure 1: Expected variation of time period with distance of the point of suspension from C.G.

Ferguson's method for determination of g

Using Equations (4) and (5) we get

$$l^2 = \frac{g}{4\pi^2} lT^2 - k^2$$

A graph between l^2 and lT^2 should therefore be a straight line with slope, $\frac{g}{4\pi^2}$ as shown in (Figure2).

The intercept on the y-axis is $\rightarrow k^2$.

Acceleration due to gravity, $g = 4\pi^2 \times \text{slope}$

Radius of gyration, $k = \sqrt{(\text{intercept})}$

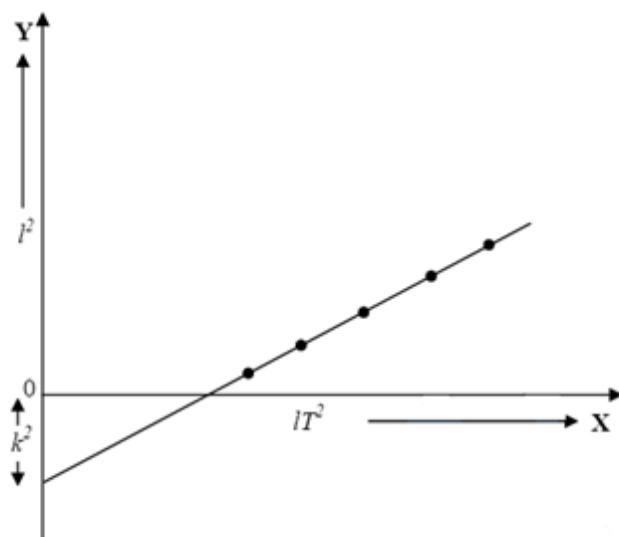


Figure2: Expected form of the graph between l^2 and lT^2 .

PROCEDURE:

1. Balance the bar on a sharp wedge and mark the position of its C.G.
2. Fix the knife edges in the outermost holes at either end of the bar pendulum. The knife edges should be horizontal and lie symmetrically with respect to centre of gravity of the bar.
3. Check with spirit level that the glass plates fixed on the suspension wall bracket are horizontal. The support should be rigid.
4. Suspend the pendulum vertically by resting the knife edge at end A of the bar on the glass plate.
5. Displace the bar slightly to one side of the equilibrium position and let it oscillate with the amplitude not exceeding 5 degrees. Make sure that there is no air current in the vicinity of the pendulum.
6. Use the stop watch to measure the time for 20 oscillations. The time should be measured after the pendulum has had a few oscillations and the oscillations have become regular.
7. Measure the distance l from C.G. to the knife edge.

8. Record the results in Table 1. Repeat the measurement of the time for 20 oscillations and take the mean.
9. Suspend the pendulum on the knife edge of side B and repeat the measurements in steps 5-8 above.
10. Fix the knife edges successively in various holes on each side of C.G. and in each case, measure the time for 30 oscillations and the distance of the knife edges from C.G.

OBSERVATIONS:

TABLE 1: MEASUREMENT OF T AND l

Least count of stop-watch =sec.

S.No.	Side A up					Side B up				
	Time for 20 Oscillations (t)		t (mean)	T = t /20 (sec)	l (cm)	Time for 20 Oscillations (t)		t (mean)	T = t /20 (sec)	l (cm)
	1	2				1	2			
1										
2										
3										
4										
5										
6										
7										
8										
9										

Calculations

Plot a graph showing how the time period T depends on the distance from the center of suspension to C.G. (l). **Figure.1** shows the expected variation of time period with distance of the point of suspension from C.G.

Acceleration due to gravity (g)

Draw horizontal lines on the graph corresponding to a period, T_1 as shown in (Figure 1). For the line ABCDE

Radius of gyration (k) and g calculation:

$$\begin{aligned}
 \text{Let } l_1 &= \frac{1}{2} (AC + CE) = \frac{1}{2} AE, \\
 \text{and } l_2 &= \frac{1}{2} (BC + CD) = \frac{1}{2} BD. \\
 \text{And from (6), } L &= \frac{1}{2} (AE + BD)
 \end{aligned} \tag{7}$$

Hence, using this T_1 and L in the formula for g (5) we get,

$$g = \dots \text{cm/sec}^2.$$

The radius of gyration (6) can be evaluated using using the expression

$$k = \sqrt{l_1 l_2} = \dots \text{ cm.}$$

Repeat it for another line A'B'C'D'E' (say for period T_2) and calculate the mean values for g and k .

If M is the mass of the bar pendulum, the moment of inertia of the bar pendulum is obtained using the equation

$$I = Mk^2$$

For **Ferguson's method**, fill up the following table to evaluate I^2 and IT^2 corresponding to all the measurements recorded in Table 1.

TABLE 2: CALCULATED VALUES OF (I^2) AND (IT^2):

S.No.	Side A up		Side B up		Mean values	
	I^2 (cm ²)	IT^2 (cm sec ²)	I^2 (cm ²)	IT^2 (cm sec ²)	I^2 (cm ²)	IT^2 (cm sec ²)
1						
2						
3						
4						
5						
6						
7						
8						
9						

Plot a graph of I^2 against IT^2 (as shown in Figure.2) and determine the values of the slope and the intercept on the I^2 axis.

Interference Obtained from Graph:

Slope of the graph = cm/sec².

Intercept = cm².

Acceleration due to gravity $g = 4\pi^2 \times \text{slope} = \dots \text{ cm/sec}^2$.

Radius of gyration, $k = \sqrt{(\text{intercept})} \dots \text{ cm}^2$.

EX.NO. 3: YOUNG'S MODULUS OF WOOD USING A STRAIN GAUGE

AIM:

To determine the Young's modulus of a half meter wooden scale using a Strain Gauge.

APPARATUS REQUIRED:

A half meter scale with two identical strain gauges attached to one end of the scale, one strain gauge at the top and the other at the bottom; other end of the scale is attached to the table with a clamp; a circuit board with appropriate terminals to constitute a Wheatstone bridge network.

STRAIN GAUGE:

Young's modulus (Y) of the bar (scale) is defined by the ratio of stress (F/A) and tensile strain($\Delta L/L$),

where, F is the force applied (Newton), A is the cross-sectional area (m^2), ΔL is the change in length (m), L is the original change in length (m).

A strain gauge is a transducer whose electrical resistance varies in proportion to the amount of strain in the device. The most widely used gauge is metallic strain gauge which consists of a very fine wire or, more commonly, metallic foil arranged in a grid pattern. The grid pattern maximizes the amount of metallic wire or foil subject to strain in the parallel direction (Fig.1).The cross-sectional area of the grid is minimized to reduce the effect of shear strain and Poisson strain. The grid is bonded to a thin backing, called the carrier, which is attached directly to the test specimen. Therefore, the strain experienced by the test specimen is transferred directly to the strain gauge, which responds with a linear change in electrical resistances.

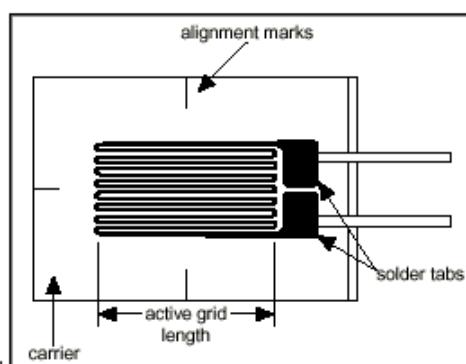


Figure.1

A fundamental parameter of the strain gauge is its sensitivity to strain, expressed quantitatively as the gauge factor (λ). Gauge factor is defined as the ratio of fractional change in electrical resistance to the fractional change in length (strain).

The gauge factor (λ) for metallic strain gauge is typically around 2.

WHEATSTONE BRIDGE:

Measuring the strain with a strain gauge requires accurate measurement of very small change in resistance and such small changes in R can be measured with a Wheatstone bridge. A general Wheatstone bridge consists of four resistive arms with an excitation voltage, V_{EX} , that is applied across the bridge (Figure.2)

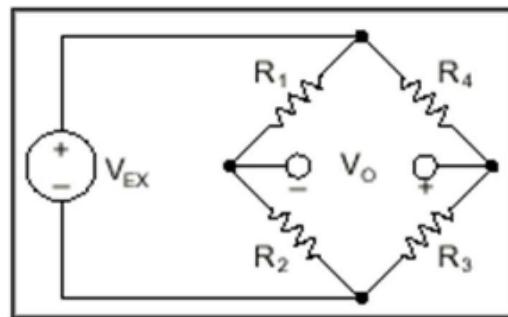


Figure 2. Wheatstone Bridge

The output voltage of the bridge, V_o , will be equal to:

From this equation it is apparent that when $R_1/R_2=R_3/R_4$, the output voltage V_o will be zero. Under this condition, the bridge is said to be balanced. Any change in resistance in any arm of the bridge will result in a non-zero output voltage. Therefore, if we replace R_4 in Figure 2 with an active strain gauge, any change in the strain gauge resistance will unbalance the bridge and produce a nonzero output voltage. If the nominal resistance of the strain gauge is designed as R_G , then the strain induced change in resistance ΔR , can be expressed as

Assuming that $R_1=R_2$ and $R_3=R_G$, the bridge equation above can be rewritten to express V_O/V_{EX} as a function of strain.

Ideally, we would like the resistance of the strain gauge to change only in response to applied strain. However, strain gauge material, as well as the specimen material on which

the gauge is mounted, will also respond to changes in temperature. Strain gauge manufacturers attempt to minimize sensitivity to temperature by processing the gauge material to compensate for the thermal expansion of the specimen material for which the gauge is intended. While compensated gauges reduce the thermal sensitivity, they do not totally remove it. By using two strain gauges in the bridge, the effect of temperature can be further minimized. For example, in a strain gauge configuration where one gauge is active ($R_G + \Delta R$), and a second gauge is placed transverse to the applied strain. Therefore, the strain has little effect on the second gauge, called the dummy gauge. However any changes in temperature will affect both gauges in the same way. Because the temperature changes are identical in the two gauges, the ratio of their resistance does not change, the voltage V_o does not change, and the effects of the temperature change are minimized.

The sensitivity of the bridge to strain can be doubled by making both gauges active in a half bridge configuration. Figure.3 illustrates a bending beam application with one bridge mounted in tension ($R_G + \Delta R$) and the other mounted in compression ($R_G - \Delta R$). This half bridge configuration, whose circuit diagram is also illustrated in Figure.3 yields an output voltage that is linear and approximately doubles the output of the quarter bridge.

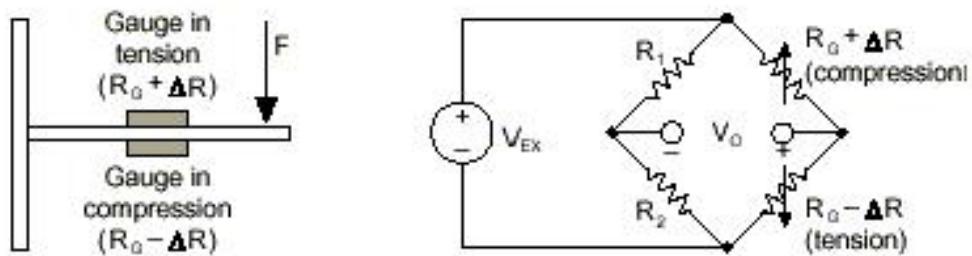


Figure.3

And in this experiment, we aim to determine the Young's modulus of a half meter wooden bar by loading it with a mass of " m " gram. For a beam of rectangular cross section with breadth b and thickness d , the moment of inertia I , is

The moment of force/restoring couple is $Y.I/r_c$ where r_c is the radius of curvature of the bending beam. The Young's modulus is calculated by assuming that at equilibrium, the bending moment is equal to the restoring moment.

PROCEDURE:

1. Clamp the beam to the table in such a way that the strain gauges are close to the clamped end. Load and unload the free end of the beam a number of times.
2. Make the connections as given in the circuit diagram (Figure.4)

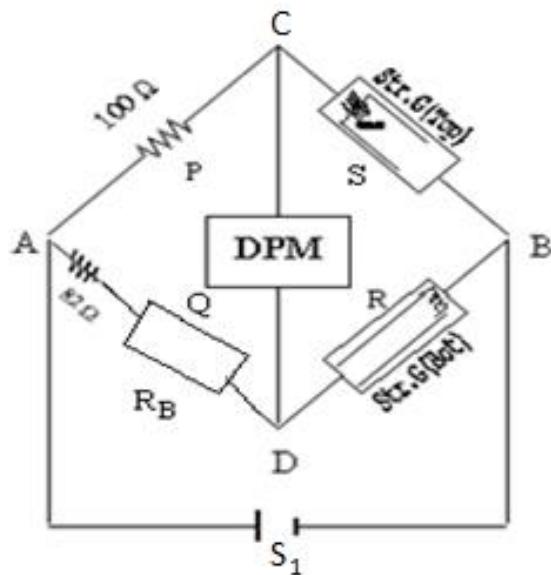
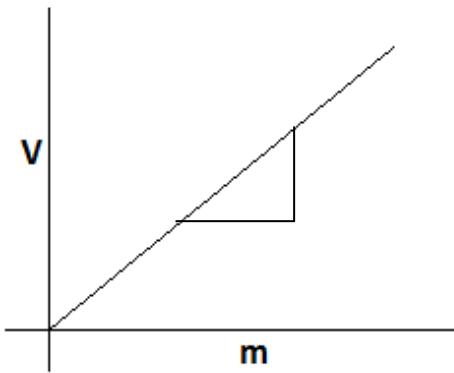



Figure.4

$P=100\Omega$ resistor, $S_1=10$ mA current source, DPM= a voltmeter with digital panel. $R=S$ = strain gauge resistance $\sim 120\Omega$ with a gauge factor $\lambda=2.2$, $Q=82\Omega$ (plus the resistance of the rheostats) all in series.

3. Switch ON the constant current source (S_1) and DPM.
4. Balance the bridge using the rheostats. At this stage the DPM will read or very nearly zero. Note that, this is done at no load (only with the dead load).
5. Load the beam with a hanger of mass ' m ' gm suspending it as close to the free end of the scale as possible. Note the DPM reading. (Note that as you are about to take a reading the last digit will be changing about the actual steady value. Take at least 10 readings continuously and take the average these ten).
6. Increase the load in steps of **m (50) gm**, up to **$5m$** gm and take the readings each time.
7. Unload the beam from $5m$ down to zero in steps of m gm at a time and note the DPM reading each time.
8. To check reproducibility, repeat all the above process taking readings while loading and unloading in steps of m gm.
9. Draw a graph between m along X axis and unbalanced voltage V along Y axis. Determine the slope of the graph (dV/dm)

10. Note the distance between the center of the strain gauges and the point of application of the load (L).
11. Measure the breadth of the beam using slide calipers (b).
12. Measure the thickness of the beam using a screw gauge (d).
13. Young's modulus of the material of the beam, which is nothing but stress to strain ratio, is given by the following expression (Working formula).

where

- g is the acceleration due to gravity,
- λ is the gauge factor (for metal strain gauge $\lambda = 2.2$).
- I is the output current from the source S_1 .
- R is the resistance of strain gauge.
- $\frac{dV}{dm}$ is slope of the m Vs V curve

TABULATION:

Load (gram)	0m	1m	2m	3m	4m
DPM reading (mV)					
1) Loading V_1					
2) Unloading V_2					
3) Mean of V_1+V_2					

RESULT:

Thus, the Young's modulus of the given wooden scale is, $Y = \dots \text{N/m}^2$.

EX.NO.4: DETERMINATION OF COEFFICIENT OF STATIC FRICTION

OBJECTIVE: To measure the static coefficient of friction for several combinations of material surfaces.

APPARATUS REQUIRED: Inclined plane, Metal block, pull-push meter, set of weights and materials with different surfaces.

FORMULA: $\text{Coefficient of static friction, } \mu_s = \frac{f_s}{N}$

$$\text{Angle of static friction, } \varphi_s = \tan^{-1}(\mu_s)$$

where,

f_s – Maximum static friction force (N)

N – Normal force applied (N)

THEORY:

The coefficient of static friction (μ_s) can be measured experimentally for an object placed on a flat surface and pulled by a known force. The friction force depends on the coefficient of static friction and the Normal force (N) on the object from the surface. When the object just begins to slide, the friction force will attain its maximum value as shown in Figure 1a.

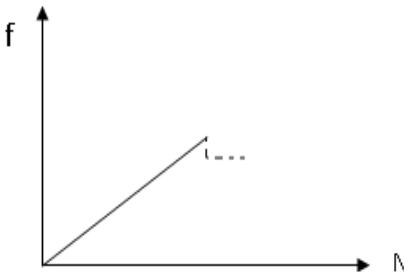


Figure 1a

The forces acting on a body kept on an inclined plane are shown in Figure 1. W is the weight of the body ($W = mg$), N is the normal force from the plane and f is the frictional force. Generally this situation is analyzed by resolving the forces into components parallel and perpendicular to the plane, as shown in Figure 1.

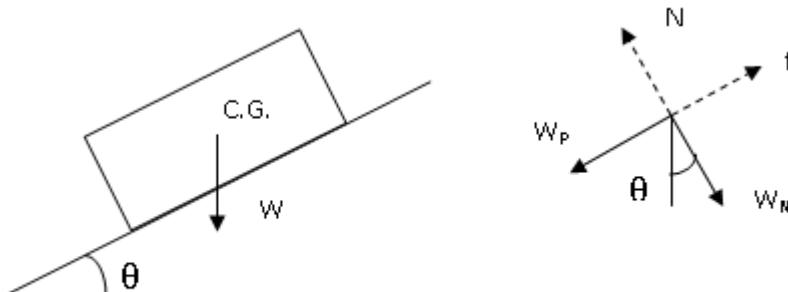


Figure 1.

The weight W is resolved into two components acting along the plane W_p and normal to plane W_N which are balanced by frictional force f and the normal force N , respectively while the body is stationary. When motion is impending, the friction force f attains its maximum value f_s . $f_s = W_p = W \sin\theta_s$

The angle at which the motion is impending is called the 'Angle of repose'.

$$\mu_s = \frac{f_s}{N} = \frac{W \sin \theta_s}{W \cos \theta_s} \rightarrow \theta_s = \tan^{-1}(\mu_s),$$

Angle of repose is equal to the angle of static friction.

Procedure

1. Place the metal block on the rubber sheet given.
2. Place some weight at the centre of the metal block and pull it horizontally using the pull-push meter.
3. Note the reading shown on the pull-push meter as motion is impending.
4. Keep the metal block on an inclined wooden plane, whose initial inclination does not exceed 10° , with the rubber sheet between metal block and wooden plane.
5. Slowly increase the angle of wooden plane.
6. Note the inclination at which motion of metal block is impending, i.e. the angle of repose for the given condition.
7. Increase the load on metal block and repeat procedure from step 1.
8. Above experiment can be repeated for different material surfaces.

TABLE 1: TO FIND THE COEFFICIENT OF STATIC FRICTION (μ_s) ON HORIZONTAL PLANE

Trial No.	Surface Type	Total Weight of metal block, $W = N$	Max. friction force, i.e. Pull-Push meter reading, f_s	Co-efficient of static friction, $\mu_s = f_s / N$	Angle of static friction, $\phi_s = \tan^{-1}(\mu_s)$
1	-----				
2					
3					

** Repeat this for other given surfaces also

TABLE 2: TO FIND THE COEFFICIENT OF STATIC FRICTION (μ_s) ON INCLINED PLANE

Trial No.	Surface Type	Length (l)	Height (h)	Angle of repose, (θ_s)	$\mu_s = \tan(\theta_s)$
1	-----				
2					
3					

** Repeat this for other given surfaces

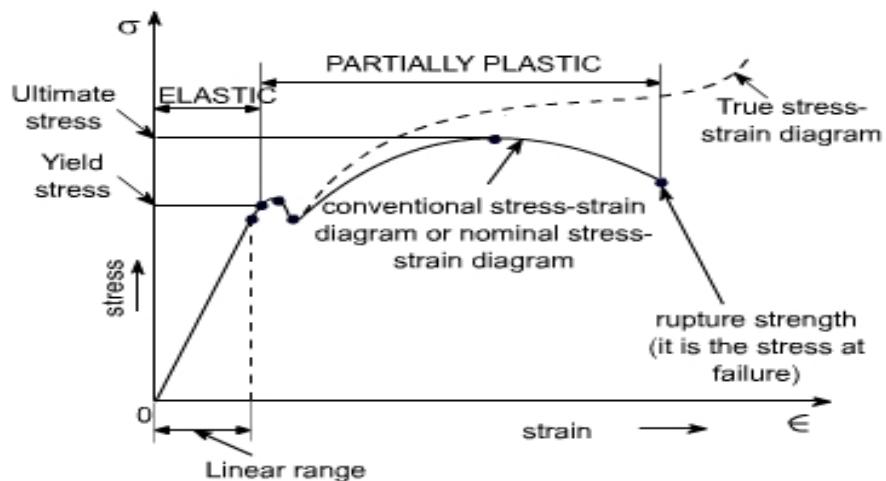
Graph

Plot a graph between the normal force (N) and the frictional force (f_s) obtained while the metal block was kept on the horizontal plane.

TABLE 3: Comparison of (i) values of μ_s , and (ii) the values of θ_s and ϕ_s .

Trail No.	Surface Type	Angle of Static Friction (ϕ_s)	Angle of repose, (θ_s)	μ_s (From Horizontal Plane)	μ_s , (From Inclined Plane)

EX NO. 5 : TENSILE TEST


AIM: To study the response of the given specimens subjected to tensile load.

DESCRIPTION:

The engineering tension test is widely used to provide basic design information on the strength of the materials and as an accepted test for the specification of the materials. In the tension test a specimen is subjected to a continually increasing uniaxial tensile force while simultaneous observations are made of the elongation of the specimen.

APPARATUS/ INSTRUMENT REQUIRED:

1. INSTRON tensile testing machine, Capacity-2 kN, Vernier caliper and scale, Test specimens- as per ASTM standards

PROCEDURE:

1. Measure and record the initial dimension of the specimen (gauge length- L_0 , width w_0 , thickness t_0 , cross section area $A_0 = w_0 \times t_0$).
2. Fix the test specimen between fixed and movable jaws of machine.
3. Reset the load to zero.
4. Operate the machine till the specimen fractures.
5. Measure and record the final configuration of the specimen (gauge length L_f , width w_f , thickness t_f , cross section area $A_f = w_f \times t_f$).
6. Repeat the experiment for different strain rate (rate of loading).

7. Using the data acquired by the system, construct the stress-strain curves and find the various parameters as listed in the calculation.

OBSERVATION:

Sl. No	Material, Strain rate & Load	Dimensions (mm)	Fracture dimension (mm)
1	<u>Aluminium</u> Strain rate: Load:	$L_o =$ $w_o =$ $t_o =$ $A_o =$	$L_f =$ $w_f =$ $t_f =$ $A_f =$
2	<u>Nylon</u> Strain rate: Load:	$L_o =$ $w_o =$ $t_o =$ $A_o =$	$L_f =$ $w_f =$ $t_f =$ $A_f =$

CALCULATIONS:

$$1. \quad A_0 = \quad \text{mm}^2$$

$$2. \quad A_f = \quad \text{mm}^2$$

$$3. \quad \text{Ultimate tensile strength, } S_U = \frac{P_{Max}}{A_0} (\text{N/mm}^2) \quad (\text{Neck formation starts})$$

Where, P_{max} is the at the maximum of the curve

Yield strength, $S_0 \Rightarrow$ load at which sample starts getting Plastic deformation (ie the curve starts deviation from linear nature)

Note: Yield strength is the stress required to produce a small specified amount of plastic deformation. The usual definition of this property is the offset yield strength determined by the stress corresponding to the intersection of the stress-strain curve and a line parallel to the elastic part of the curve offset by a strain of 0.2%.

$$4. \quad \text{Breaking stress, } S_f = \frac{P_f}{A_0} (\text{N/mm}^2)$$

where, P_f is the breaking/fracture load (load at occurrence of fracture) .

5. **Strain,** $e_f = \frac{L_f - L_0}{L_0}$

6. **Reduction in area at fracture,** $q = \frac{A_f - A_0}{A_0}$

7. **Modulus of elasticity,** $E = \text{Slope of initial linear portion of the curve},$

8. **Resilience,** $U_R = \frac{S_0^2}{2E}$ N/mm².

9. **Toughness,** $U_R = \frac{S_0 + S_U}{2} e_f$ N/mm².

INFERENCE:

1. Compare the results and state which material has high strength, toughness, ductility and stiffness.
2. State the effect of strain rate in material response.