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1. King Problem The king summoned the best mathematicians in the kingdom to the palace
to find out how smart they were. The king told them ”I have placed white hats on some of
you and black hats on the others. You may look at, but not talk to one another. I will leave
now and will come back every hour on the hour. Every time I return, I want those of who
have determined that you are wearing white hats to come up and tell me immediately.” As it
turned out, at the nth hour every one of the ’n’ mathematicians who were given white hats
informed the king that she knew that she was wearing a white hat? Why?

Solution: We shall prove by mathematical induction on n ≥ 2, n represents the number
of mathematicians with white hats. Base: n = 2. There are two mathematicians with
white hats and we now show that at the end of second hour mathematicians who are
given white hats will inform the king about her hat’s color. Note that the number of
mathematicians is k ≥ 2, out of which two are wearing white hats and the rest are wear-
ing black hats. Let M1,M2 are wearing white and M3, . . . ,Mk are wearing black. Each
Mi, 3 ≤ i ≤ k, sees 2 white hats and (k−1) black hats. Further each Mi thinks that there
are at least two 2 white hats as her hat color may be white or black. Both M1 and M2

can see one white hat and the rest seen are black hats. For clarity purpose, let us fix M1.
Note that king has placed some white hats (there is no scenario with only black hats).
With respect to M1, had M1 been wearing black, M2 would have approached the king
at the end of first hour and informed her hat color. The fact that M2 did not approach
the king at the end of first hour will only imply that both M1 and M2 are wearing white.
Subsequently, they both approach the king at the end of second hour and inform the
king that they both are wearing white hats. For clarity purpose, we consider n = 3 case
also. Let M1,M2,M3 are wearing white and the rest are black. Each black hat person
thinks that there are at least 3 white hats. Each of M1,M2,M3 sees two white hats and
the rest black hats. Had M1 been wearing black hat, M2 and M3 would have approached
the king at the end of second hour, that this does not happen implies that M1 is wearing
white and all three (M1,M2,M3) approach the kind at the end of third hour to inform
that they are wearing white hats.

Hypothesis: Assume that there are n = l, l ≥ 2, mathematicians wearing white hats
and all report at the end of lth hour that they are wearing white hats.
Induction step: Consider n = l+1, l ≥ 2 mathematicians wearing white hat. Let Ml+1

be the mathematician wearing white hat and sees l other white hats and the rest are
black hats. Had Ml+1 been white, by the induction hypothesis M2, . . . ,Ml+1 would have
approached the king at the end of lth hour. Since M2, . . . ,Ml+1 did not approach the king
at the end lth hour will only imply that Ml+1 is white and all M1, . . . ,Ml+1 approach
and inform the king at the end of (l + 1)th hour about their hat color.

2. Tray problem: A tray contains labelled balls and there are finite number of balls on the
tray. The game proceeds like this: if you take out a ball labelled i ≥ 2, you can replace with



any number of balls (of course, finite number) whose labels are from {1, . . . , i − 1}. There
is no replacement for the ball labelled 1. The goal is to show that this game terminates, i.e.
there is a sequence of replacements which will result in empty tray. We shall prove this using
induction on the value of largest label.
Base: n = 1. Suppose the tray contains balls labelled ’1’ only. Clearly, there is a finite se-
quence of moves which will result in empty tray as there is no replacement for balls that are
labelled ’1’.
Hypothesis: n = k ≥ 1. Let the largest label is k. We assume that there is a sequence of
moves which will make the tray empty.
Induction step: n = k + 1, k ≥ 1. Let A = {Bk+1 | there is a ball labelled (k + 1) in the
tray }. Since there is a replacement for Bk+1, start taking each ball labelled Bk+1 from the
tray till A is empty (all Bk+1 labelled are taken out of the tray). Clearly for each pick, we
will replace it with balls labelled B1, . . . , Bk. Now, in the tray the highest index is k and by
the induction hypothesis, there is a sequence which will make the tray empty. This completes
the induction and hence the claim.

3. Five darts are thrown at an equilateral triangular target measuring 14 inches on a side. Prove
that two of them must be at a distance no more than 7 inches apart.
Solution:
Divide the equilateral triangle into four T1, T2, T3 and T4 equilateral tringles as shown in
Figure.
Pigeon holes: T1, T2, T3 and T4

Pigeons: Five darts.
PHP: At least one hole will have two darts and it will be at most 7 inches apart as distance
between any two points in any Ti is at most 7. ut

4. From a bin with 2 red pebbles, 5 green pebbles and 6 blue pebbles, how many must you take
to be sure that you have
• at least 2 colors ?
• at least 3 colors ?
• at least 2 of the same color ?
• at least 4 of the same color ?

Solution:

• Seven (6+1). Note: if you pick any 7, you will always find at least 2 colors. For less than
7, some pick may be yes and the rest may be no. Since the pick is arbitrary, 7 is the right
answer.

• Twelve (6+5+1).
• Four(1 ∈ R+ 1 ∈ G+ 1 ∈ B +1 ∈ {R,G,B}).
• Nine (2 ∈ R+ 3 ∈ G+ 3 ∈ B +1 ∈ {G,B}).
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ut

5. Prove that among five points select inside an equilateral triangle with side equal to 1, there
always exists a pair at a distance not greater than 0.5.
Solution:
Divide the equilateral triangle into four T1, T2, T3 and T4 equilateral tringles as shown in
Figure.
Pigeon holes: T1, T2, T3 and T4

Pigeons: Five points.
PHP: At least one hole will have two points and it will be at most 0.5 inches apart. ut

6. Suppose a postal department prints only $5 and $9 stamps. Prove that it is possible to make
up any postage of $n using only $5 and $9.
Solution:
Let us prove this by induction on n. Base Case: n = 35. Seven $5’s.
Hypothesis: n = k, k ≥ 35. Assume that $k request can be served using $5 and $9.
Induction Step: n = k + 1, k ≥ 35. We will divide this into two cases
Case 1: There exist at least one $9.
Replace one $9 with two $5.
Case 2: There exist at least seven $5.
Replace seven $5 with four $9.
The induction is complete and hence the claim follows. Note: Induction works fine even if
we assume base case to be n = 32. In fact any n ≥ 32 works fine. ut

7. Given any set of 7 distinct integers, there must exist 2 integers in this set whose sum or
difference is divisible by 7.
Solution:
Pigeon holes: (0, 7), (1, 6), (2, 5), (3, 4), 4 holes.
Pigeons: 7 distinct integers.
PHP: Place the integer x in the hole (y, z) if x%7 = y or x%7 = z. Note x%7 is x mod
7. There exist at least one hole with the d74e = 2 integers such that either both has the
same remainder or different remainders. If it has the same remainder then, the difference is
divisible by 7. If it has different remainders then, the sum is divisible by 7. ut

8. Among 61 integral powers of the integer 5, there are at least 6 of them that have the same
remainder when divided by 12.
Solution:
Pigeon holes: 0, 1, . . . , 11, there are 12 holes based on possible remainders.
Pigeons: 61 different integral powers of 5.
PHP: Place the number x in the hole y if x%12 = y. There exist at least one hole with
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d6112e = 6 numbers such that they have the same remainder when divided by 12. ut

9. The circumference of two concentric disks is divided into 200 sections each. For the outer
disk, 100 of the sections are painted red and 100 of the sections are painted white. For the
inner disks the sections are painted red and white in an arbitrary manner. Show that it is
possible to align two disks so that 100 or more of the sections in the inner disk have their
colors matched with the corresponding sections on the outer disk.
Solution:
Fix the inner disk and rotate the outer in anti-clock wise direction. O1, . . . , O200 denote

segments in the outer disk and I1, . . . , I200 denote segments in the inner disk. If suppose O1

is colored blue, then during anti-clock wise rotation, it will see 100 Ii’s which are colored
blue and hence there is a match at 100 places. Similar argument holds good if O1 is colored
red. This implies that there are 100 matches for each Oi and therefore 200 × 100 matches
altogether for the outer disk. Since there are 200 segments in the inner disk, by pigeon hole
principle, 20000 matches (alignments) are distributed among 200 segments. So the average
is 100 and at least in one alignment 100 or more of the segments of outer disk will match
with the segments of inner disk.

ut

10. Suppose that a computer science laboratory has 15 workstations and 10 servers. A cable
can be used to directly connect a workstation to a server. For each server, only one direct
connection to that server can be active at any time. We want to guarantee that at any time
any set of 10 or fewer workstations can simultaneously access different servers via direct
connections. Although we could do this by connecting every workstation directly to every
server (using 150 connections), what is the minimum number of direct connections needed
to achieve this goal?
Solution:
Let S1, S2, . . . , S10 be the 10 servers and W1,W2, . . . ,W15 be the 15 workstations. Connect
W1,W2, . . . ,W10 to S1, S2, . . . , S10, respectively (10 cables). Now, connect each workstation
W10, W11, . . ., W15 to all 10 servers (50 cables). So that at any time any set of 10 or fewer
workstations can simultaneously access different servers via direct connections and this is
minimum to achieve this. Minimum number of direct connections needed to achieve this goal
= 60. ut
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11. Find the least number of cables required to connect eight computers to four printers to guar-
antee that for every choice of four of the eight computers, these four computers can directly
access four different printers.
Solution:
Let C1, C2, . . . , C8 be the 8 computers and P1, P2, P3, P4 be the 4 printers. Connect C1, C2, . . . , C4

to P1, P2, P3, P4, respectively (4 cables). Now, connect computer C4, C5, . . ., C8 to all 4 print-
ers (16 cables). So that for every choice of four of the eight computers, these four computers
can directly access four different printers and this is minimum to achieve this. Minimum
number of direct connections needed to achieve this goal = 20. ut
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