

Indian Institute of Information Technology
Design and Manufacturing, Kancheepuram

Chennai 600 127, India

An Autonomous Institute under MHRD, Govt of India

An Institute of National Importance

www.iiitdm.ac.in

Instructor

N.Sadagopan

Scribe:

S.Dhanalakshmi

P.Renjith

COM205T Discrete Structures for Computing

Assignment-5 (*Relations and Functions*)

Question 1 Let R_1 and R_2 be relations on A . Prove each of the following.

- $r(R_1 \cup R_2) = r(R_1) \cup r(R_2)$
- $s(R_1 \cup R_2) = s(R_1) \cup s(R_2)$
- $t(R_1 \cup R_2) \supset t(R_1) \cup t(R_2)$
- Show by counter example that $t(R_1 \cup R_2) \not\subset t(R_1) \cup t(R_2)$

Solution:

a. By definition $r(R) = R \cup E$. $r(R_1) = R_1 \cup E$, $r(R_2) = R_2 \cup E$.

$$r(R_1) \cup r(R_2) = R_1 \cup E \cup R_2 \cup E = R_1 \cup R_2 \cup E = r(R_1 \cup R_2)$$

b. By definition $s(R) = R \cup R^c$. $s(R_1) = R_1 \cup R_1^c$, $s(R_2) = R_2 \cup R_2^c$.

$$s(R_1) \cup s(R_2) = R_1 \cup R_1^c \cup R_2 \cup R_2^c = R_1 \cup R_2 \cup (R_1 \cup R_2)^c = s(R_1 \cup R_2)$$

c. $R_1 \subset t(R_1 \cup R_2)$. For every $(a, b), (b, c) \in R_1$, $(a, c) \in t(R_1)$. It follows that $(a, c) \in t(R_1 \cup R_2)$. Similar arguments hold for R_2 . Therefore $t(R_1) \cup t(R_2) \subset t(R_1 \cup R_2)$

d. $A = \{1, 2, 3\}$, $R_1 = \{(1, 2)\}$, $R_2 = \{(2, 3)\}$

$t(R_1 \cup R_2) = \{(1, 2), (2, 3), (1, 3)\}$, $t(R_1) = \{(1, 2)\}$, $t(R_2) = \{(2, 3)\}$ and $t(R_1) \cup t(R_2) = \{(1, 2), (2, 3)\}$

here $t(R_1 \cup R_2) \not\subset t(R_1) \cup t(R_2)$

Question 2 Show that if R is a quasi order then R is always antisymmetric.

Solution:

Given: R is transitive and irreflexive.

For any pair $a, b \in R$, if $(a, b) \in R$ then $(b, a) \notin R$ (Suppose if $(a, b), (b, a) \in R$ then by transitivity $(a, a) \in R$, which is a contradiction to irreflexive property). Thus, R is asymmetric and hence R is antisymmetric.

Question 3 Let (A, R) be a poset and B a subset of A . Prove the following

- If b is a greatest element of B , then b is a maximal element of B
- If b is a greatest element of B , then b is lub of B

Solution:

a. An element $b \in B$ is a greatest element of B if for every $b' \in B$, $b' \leq b$. An element $b \in B$ is

a maximal element of B if $b \in B$ and there does not exist $b' \in B$ such that $b \neq b'$ and $b \preceq b'$. Therefore if b is a greatest element, then there does not exist $b' \in B$ such that $b \neq b'$ and $b \preceq b'$, implies that b is a maximal element.

b. An element $b \in A$ is upper bound for B if for every element $b' \in B$, $b' \preceq b$. An element $b \in A$ is a least upper bound (lub) for B if b is an upper bound and for every upper bound b' of B , $b \preceq b'$. Therefore, if b is a greatest element, then b is clearly an upper bound. Since $b \in B$, it must be the case that $b \preceq b'$ for every upper bound b' . Therefore, b is lub.

Question 4 Construct examples of the following sets:

- a) A non-empty linearly ordered set in which some subsets do not have a least element.
- b) A non-empty partially ordered set which is not linearly ordered and in which some subsets do not have a greatest element. Construct both finite and infinite examples.
- c) A partially ordered set with a subset for which there exists a glb but which does not have a least element. Construct both finite and infinite examples.
- d) A partially ordered set with a subset for which there exists an upper bound but not a least upper bound. Construct both finite and infinite examples.

Solution:

- (a) (I, \leq)
- (b) **Example: Finite set** The poset given in Figure 1 is not a linearly ordered set and the

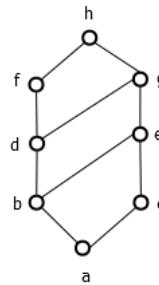


Fig. 1.

subset $\{d, e\}$ does not have the greatest element.

Example: Infinite Set $(N \setminus \{0\}, |)$, where $a | b$ denotes a divides b . The set itself does not have the greatest element.

(c) **Example: Finite set** The poset given in Figure 1, has a subset $\{d, e\}$ for which there exists a glb, $\{b\}$, but which does not have a least element.

Example: Infinite Set $(N \setminus \{0\}, |)$, where $a | b$ denotes a divides b . The subset $\{4, 6\}$ has a glb, $\{2\}$, but does not have a least element.

(d) **Example: Finite set** The poset given in Figure 2, has a subset $\{a\}$ for which there exists a upper bound, $\{b, c, d, e, f, g\}$ but no least upper bound.

Example: Infinite set Set: R , Subset: $(0, 1)$, Relation: less than. Upper bound $\{x \mid x \geq 1\}$, however the subset has no least upper bound.

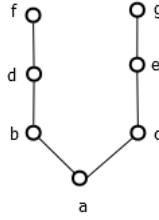


Fig. 2.

Question 5 Construct a bijection from A to B

- a. $A = I, B = N$
- b. $A = N, B = N \times N$
- c. $A = [0, 1), B = (\frac{1}{4}, \frac{1}{2}]$
- d. $A = R, B = (0, \infty)$

Solution:

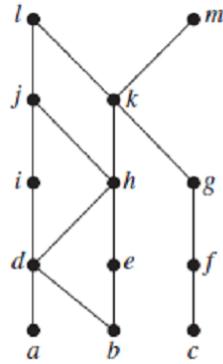
(a). $f(x) = 2|x|$ if $x \geq 0$
 $f(x) = 2|x| + 1$ if $x < 0$

(b). Construct $N \times N$ matrix and enumerate in a systematic way,
i.e. $(0, 0), (1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), \dots$ This shows that there is one-one correspondence between every element of N and an element of $N \times N$ matrix.

(c). $f(x) = \frac{2-x}{4}$

(d). $f(x) = e^x$

Question 6 For the following hasse diagram, find



(a) Find the maximal elements.

Solution: $\{l, m\}$

b) Find the minimal elements.

Solution: $\{a, b, c\}$

c) Is there a greatest element?

Solution: No

d) Is there a least element?

Solution: No

e) Find all upper bounds of $\{a, b, c\}$.

Solution: $\{k, l, m\}$

f) Find the least upper bound of $\{a, b, c\}$, if it exists.

Solution: $\{k\}$

g) Find all lower bounds of $\{f, g, h\}$.

Solution: NIL

h) Find the greatest lower bound of $\{f, g, h\}$, if it exists.

Solution: NIL

Question 7 Using PIE (principle of inclusion and exclusion), Find the number of positive integers not exceeding 100 that are either odd or the square of an integer

Solution:

Number of odd numbers = $|O| = 50$

Number of square numbers = $|S| = 10$

Number of odd square numbers = $|O \cap S| = 5$

$$|O \cup S| = |O| + |S| - |O \cap S|$$

$$= 50 + 10 - 5 = 55$$

Question 8 Using PIE, How many bit strings (binary) of length eight do not contain six consecutive 0's.

Solution:

Number of bit strings of length 8 do not contain six consecutive 0's = Total number of bit strings of length 8 - Number of bit strings containing 6 consecutive 0's.

Note that the total number of bit strings of length 8 = $2^8 = 256$

Number of bit strings containing 6 consecutive 0's

Let k denote the substring with six zeroes and a, b are the other two bits.

Number of bit strings containing 6 consecutive 0's = number of bit strings of length 8 of the form kab + number of bit strings of length 8 of the form abk + number of bit strings of length 8 of the form akb - number of bit strings of length 8 of the form kab and abk - number of bit strings of length 8 of the form akb and abk - number of bit strings of length 8 of the form kab and akb + number of bit strings of length 8 of the form kab, abk and akb .

$$= 4 + 4 + 4 - 1 - 2 - 2 + 1 = 8$$

Therefore, number of bit strings of length 8 do not contain six consecutive 0's = $256 - 8 = 248$.

Question 9 Using PIE, count the number of primes between 2 and 100

Solution:

Consider the prime factors 2, 3, 5, 7. P_i represents number of elements in the range 2-100 that are divisible by i .

$|P_i P_k \dots P_j|$ represents the number of elements in the range 2-100 that are divisible by $i \times k \times \dots \times j$.
 Number of primes between 2 and 100 = 99 - number of numbers that are multiples of 2,3,5,7 + 4 (the numbers 2,3,5,7).

$$\begin{aligned} \text{Number of prime numbers (excluding 2,3,5,7)} &= 99 - |P_2| - |P_3| - |P_5| - |P_7| \\ &+ |P_2 P_3| + |P_3 P_5| + |P_5 P_7| + |P_2 P_5| + |P_2 P_7| + |P_3 P_7| - |P_2 P_3 P_5| - |P_2 P_3 P_7| - |P_3 P_5 P_7| \\ &- |P_2 P_5 P_7| + |P_2 P_3 P_5 P_7| \\ &= 99 - 50 - 33 - 20 - 14 + 16 + 10 + 7 + 6 + 4 + 2 - 3 - 2 - 1 - 0 + 0 = 21 \end{aligned}$$

Therefore, the total number of primes in the range 2-100 = 21 + 4 = 25.

Question 10 Using PIE, the number of solutions to $x_1 + x_2 + x_3 = 10$ with $x_1 \leq 2, x_2 \leq 2, x_3 \leq 3$.

Solution:

Number of solutions = Number of solutions without any constraints - Number of solutions with $(x_1 \geq 3 \vee x_2 \geq 3 \vee x_3 \geq 4)$

Generic Approach: Let $x_1 + x_2 + x_3 = r$ such that $x_i \geq 0$. The number of solutions to this equation is the number of ways distributing r balls into 3 boxes, which is equivalent to introducing two 0's into r -bit string consisting of all 1's. In other words, the number of permutations (reorderings) of a string containing r ones and 2 zeros. Let $x_1 + x_2 + x_3 = r$ such that $x_i \geq 1$. The number of solutions to this equivalent to the number of solutions to $y_1 + y_2 + y_3 = r - 3$ such that $y_i \geq 0$. Using this approach we shall now do the counting.

Number of solutions without any constraints = Number of reorderings of 10 ones and 2 zeroes = $12C_2 = 66$

Let A denotes $x_1 \geq 3$, B denotes $x_2 \geq 3$ and C denotes $x_3 \geq 4$.

Number of solutions with $(x_1 \geq 3 \vee x_2 \geq 3 \vee x_3 \geq 4) = n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$

$n(A) = n(B) =$ Reordering 7 one's and 2 zeroes (as three one's are already fixed) = $9C_2 = 36$

$n(C) =$ Reordering 6 one's and 2 zeroes (as four one's are already fixed) = $8C_2 = 28$

$n(A \cap B) =$ Reordering 4 one's and 2 zeroes (as six one's are already fixed) = $6C_2 = 15$

$n(A \cap C) = n(B \cap C) =$ Reordering 3 one's and 2 zeroes (as seven one's are already fixed) = $5C_2 = 10$

$n(A \cap B \cap C) =$ Reordering zero one's and 2 zeroes (as all the 10 one's are fixed) = $2C_2 = 1$

Number of solutions with $(x_1 \geq 3 \vee x_2 \geq 3 \vee x_3 \geq 4) = 36 + 36 + 28 - 15 - 10 - 10 + 1 = 66$

Therefore, the number of solutions = $66 - 66 = 0$.