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Assignment-5 (Relations and Functions)

Question 1 Let R1 and R2 be relations on A. Prove each of the following.

a. r(R1 ∪R2) = r(R1) ∪ r(R2)

b. s(R1 ∪R2) = s(R1) ∪ s(R2)

c. t(R1 ∪R2) ⊃ t(R1) ∪ t(R2)

d. Show by counter example that t(R1 ∪R2) 6⊂ t(R1) ∪ t(R2)

Solution:
a. By definition r(R) = R ∪ E. r(R1) = R1 ∪ E, r(R2) = R2 ∪ E.
r(R1) ∪ r(R2) = R1 ∪ E ∪R2 ∪ E = R1 ∪R2 ∪ E = r(R1 ∪R2)

b. By definition s(R) = R ∪Rc. s(R1) = R1 ∪Rc
1, s(R2) = R2 ∪Rc

2.
s(R1) ∪ s(R2) = R1 ∪Rc

1 ∪R2 ∪Rc
2 = R1 ∪R2 ∪ (R1 ∪R2)

c = s(R1 ∪R2)

c. R1 ⊂ t(R1∪R2). For every (a, b), (b, c) ∈ R1, (a, c) ∈ t(R1). It follows that (a, c) ∈ t(R1∪R2).
Similar arguments hold for R2. Therefore t(R1) ∪ t(R2) ⊂ t(r1 ∪R2)

d. A = {1, 2, 3}, R1 = {(1, 2)}, R2 = {(2, 3)}
t(R1 ∪ R2) = {(1, 2), (2, 3), (1, 3)}, t(R1) = {(1, 2)}, t(R2) = {(2, 3)} and t(R1) ∪ t(R2) =
{(1, 2), (2, 3)}
here t(R1 ∪ r2) 6⊂ t(R1) ∪ t(R2)

Question 2 Show that if R is a quasi order then R is always antisymmetric.

Solution:
Given: R is transitive and irreflexive.
For any pair a, b ∈ R, if (a, b) ∈ R then (b, a) /∈ R (Suppose if (a, b), (b, a) ∈ R then by transi-
tivity (a, a) ∈ R, which is a contradiction to irreflexive property). Thus, R is asymmetric and
hence R is antisymmetric.

Question 3 Let (A,R) be a poset and B a subset of A. Prove the following

a. If b is a greatest element of B, then b is a maximal element of B
b. If b is a greatest element of B, then b is lub of B

Solution:
a. An element b ∈ B is a greatest element of B if for every b′ ∈ B, b′ � b. An element b ∈ B is



a maximal element of B if b ∈ B and there does not exist b′ ∈ B such that b 6= b′ and b � b′.
Therefore if b is a greatest element, then there does not exist b′ ∈ B such that b 6= b′ and b � b′,
implies that b is a maximal element.

b. An element b ∈ A is upper bound for B if for every element b′ ∈ B, b′ � b. An element
b ∈ A is a least upper bound (lub) for B if b is an upper bound and for every upper bound b′ of
B, b � b′. Therefore, if b is a greatest element, then b is clearly an upper bound. Since b ∈ B, it
must be the case that b � b′ for every upper bound b′. Therefore, b is lub.

Question 4 Construct examples of the following sets:
a) A non-empty linearly ordered set in which some subsets do not have a least element.
b) A non-empty partially ordered set which is not linearly ordered and in which some subsets do
not have a greatest element. Construct both finite and infinite examples.
c) A partially ordered set with a subset for which there exists a glb but which does not have a
least element. Construct both finite and infinite examples.
d) A partially ordered set with a subset for which there exists an upper bound but not a least
upper bound. Construct both finite and infinite examples.

Solution:
(a) (I,≤)
(b) Example: Finite set The poset given in Figure 1 is not a linearly ordered set and the

Fig. 1.

subset {d, e} does not have the greatest element.

Example: Infinite Set (N\{0}, |), where a | b denotes a divides b. The set itself does not
have the greatest element.

(c) Example: Finite set The poset given in Figure 1, has a subset {d, e} for which there
exists a glb, {b}, but which does not have a least element.

Example: Infinite Set (N\{0}, |), where a | b denotes a divides b. The subset {4, 6} has
a glb, {2}, but does not have a least element.
(d) Example: Finite set The poset given in Figure 2, has a subset {a} for which there exists
a upper bound, {b, c, d, e, f, g} but no least upper bound.

Example: Infinite set Set: R, Subset: (0, 1), Relation: less than. Upper bound {x | x ≥ 1},
however the subset has no least upper bound.
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Fig. 2.
Question 5 Construct a bijection from A to B

a. A = I,B = N

b. A = N,B = N ×N

c. A = [0, 1), B = (14 ,
1
2 ]

d. A = R,B = (0,∞)

Solution:
(a). f(x) = 2|x| if x ≥ 0
f(x) = 2|x|+ 1 if x < 0

(b). Construct N ×N matrix and enumerate in a systematic way,
i.e. (0, 0), (1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), (1, 4), (2, 3), ... This shows that there is one-one
correspondence between every element of N and an element of N ×N matrix.
(c). f(x)= 2−x
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(d). f(x)=ex

Question 6 For the following hasse diagram, find

(a) Find the maximal elements.
Solution: {l,m}

b) Find the minimal elements.
Solution: {a, b, c}

c) Is there a greatest element?
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Solution: No

d) Is there a least element?
Solution: No

e) Find all upper bounds of {a, b, c}.
Solution: {k, l,m}

f) Find the least upper bound of {a, b, c}, if it exists.
Solution: {k}

g) Find all lower bounds of {f, g, h}.
Solution: NIL

h) Find the greatest lower bound of {f, g, h}, if it exists.
Solution: NIL

Question 7 Using PIE (principle of inclusion and exclusion), Find the number of positive in-
tegers not exceeding 100 that are either odd or the square of an integer

Solution:
Number of odd numbers = |O| = 50
Number of square numbers = |S| = 10
Number of odd square numbers = |O ∩ S| = 5
|O ∪ S| = |O|+ |S| − |O ∩ S|
= 50 + 10− 5 = 55

Question 8 Using PIE, How many bit strings (binary) of length eight do not contain six con-
secutive 0’s.

Solution:
Number of bit strings of length 8 do not contain six consecutive 0’s = Total number of bit strings
of length 8 - Number of bit strings containing 6 consecutive 0’s.
Note that the total number of bit strings of length 8 = 28 = 256
Number of bit strings containing 6 consecutive 0’s
Let k denote the substring with six zeroes and a, b are the other two bits.
Number of bit strings containing 6 consecutive 0’s = number of bit strings of length 8 of the
form kab + number of bit strings of length 8 of the form abk + number of bit strings of length
8 of the form akb - number of bit strings of length 8 of the form kab and abk - number of bit
strings of length 8 of the form abk and akb - number of bit strings of length 8 of the form kab
and akb + number of bit strings of length 8 of the form kab, abk and akb.
= 4 + 4 + 4− 1− 2− 2 + 1 = 8
Therefore, number of bit strings of length 8 do not contain six consecutive 0’s = 256-8 = 248.

Question 9 Using PIE, count the number of primes between 2 and 100
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Solution:
Consider the prime factors 2, 3, 5, 7. Pi represents number of elements in the range 2-100 that
are divisible by i.
|PiPk . . . Pj | represents the number of elements in the range 2-100 that are divisible by i×k×. . .×j
Number of primes between 2 and 100 = 99 - number of numbers that are multiples of 2,3,5,7 +
4 (the numbers 2,3,5,7).
Number of prime numbers (excluding 2,3,5,7)= 99 - |P2|-|P3|-|P5|-|P7|
+|P2P3|+|P3P5|+|P5P7|+|P2P5|+|P2P7|+|P3P7|-|P2P3P5|-|P2P3P7|-|P3P5P7|
-|P2P5P7|+|P2P3P5P7|
= 99− 50− 33− 20− 14 + 16 + 10 + 7 + 6 + 4 + 2− 3− 2− 1− 0 + 0 = 21
Therefore, the total number of primes in the range 2-100 = 21 + 4 =25.

Question 10 Using PIE, the number of solutions to x1+x2+x3 = 10 with x1 ≤ 2, x2 ≤ 2, x3 ≤
3.

Solution:
Number of solutions = Number of solutions without any constraints - Number of solutions with
(x1 ≥ 3 ∨ x2 ≥ 3 ∨ x3 ≥ 4)
Generic Approach: Let x1 + x2 + x3 = r such that xi ≥ 0. The number of solutions to this
equation is the number of ways distributing r balls into 3 boxes, which is equivalent to intro-
ducing two 0’s into r-bit string consisting of all 1’s. In other words, the number of permutations
(reorderings) of a string containing r ones and 2 zeros. Let x1 + x2 + x3 = r such that xi ≥ 1.
The number of solutions to this equivalent to the number of solutions to y1 + y2 + y3 = r − 3
such that yi ≥ 0. Using this approach we shall now do the counting.

Number of solutions without any constraints = Number of reorderings of 10 ones and 2 ze-
roes = 12C2 = 66
Let A denotes x1 ≥ 3, B denotes x2 ≥ 3 and C denotes x3 ≥ 4.
Number of solutions with (x1 ≥ 3 ∨ x2 ≥ 3 ∨ x3 ≥ 4) = n(A ∪B ∪C) = n(A) + n(B) + n(C)−
n(A ∩B)− n(B ∩ C)− n(A ∩ C) + n(A ∩B ∩ C)
n(A) = n(B) = Reordering 7 one’s and 2 zeroes (as three one’s are already fixed) = 9C2 = 36
n(C) = Reordering 6 one’s and 2 zeroes (as four one’s are already fixed) = 8C2 = 28
n(A ∩B) = Reordering 4 one’s and 2 zeroes (as six one’s are already fixed) = 6C2 = 15
n(A ∩ C) = n(B ∩ C) = Reordering 3 one’s and 2 zeroes (as seven one’s are already fixed) =
5C2 = 10
n(A ∩B ∩ C) = Reordering zero one’s and 2 zeroes (as all the 10 one’s are fixed) = 2C2 = 1
Number of solutions with (x1 ≥ 3 ∨ x2 ≥ 3 ∨ x3 ≥ 4) = 36+36+28-15-10-10+1=66
Therefore, the number of solutions = 66-66 =0.
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