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Assignment 4.5 - Relations

Question 1 Let A = {1, 2}. Construct the set ρ(A)×A, where ρ(A) is the power set (set of all
subsets) of A.

Solution:
A = {1, 2} ; ρ(A) = {φ, {1}, {2}, {1, 2}}
ρ(A)×A = {(φ, 1), (φ, 2), ({1}, 1), ({1}, 2), ({2}, 1), ({2}, 2), ({1, 2}, 1), ({1, 2}, 2)}

Question 2 Given that A ⊆ C and B ⊆ D, show that A×B ⊆ C ×D.

Solution:
To show that A×B ⊆ C ×D, consider any arbitrary pair (a, b) ∈ A×B, where a ∈ A, b ∈ B.
A ⊆ C ⇒ a ∈ C and B ⊆ D ⇒ b ∈ D. Thus, (a, b) ∈ C ×D.
It follows that A×B ⊆ C ×D.

Question 3 Given that A×B ⊆ C ×D, does it necessarily follow that A ⊆ C and B ⊆ D ?

Solution:
It is not necessary that if A×B ⊆ C ×D then, A ⊆ C and B ⊆ D.
Counter example:
Let A = {1, 2}, B = φ, C = {3} and D = {4}
A×B = φ,C ×D = {(3, 4)}
Clearly, A×B ⊆ C ×D but A * C

Question 4 Is it possible that A ⊆ A×A for some set A ?

Solution:
Yes. If A = φ then A ⊆ A×A.

Question 5 For each of the following check whether ‘R’ is Reflexive, Symmetric, Anti-symmetric,
Transitive, an equivalence relation, a partial order.

1. R = {(a, b) | a− b is an odd positive integer }.
2. R = {(a, b) | a = b2 where a, b ∈ I+}.
3. Let P be the set of all people. Let R be a binary relation on P such that (a, b) is in R if a is

a brother of b.
4. Let R be a binary relation on the set of all strings of 0′s and 1′s, such that

R = {(a, b) | a and b are strings that have same number of 0′s}.

Solution:
Q.No Reflexive Symmetric Anti-symmetric Transitive Equivalence Poset
1. × × X × × ×
2. × × X × × ×
3. × × × X × ×
4. X X × X X ×



Question 6 Let R be a symmetric and transitive relation on set A. Show that if for every ‘a’ in
A there exists ‘b’ in A, such that (a, b) is in R, then R is an equivalence relation.

Solution:
Given: ∀a ∃b (b ∈ A ∧ (a, b) ∈ R).
To prove: R is reflexive

Since R is symmetric, if (a, b) ∈ R ⇒ (b, a) ∈ R and since R is transitive, (a, b) ∈ R, (b, a) ∈
R ⇒ (a, a) ∈ R and this argument is true ∀a ∈ A. Therefore, R is reflexive. Hence R is an
equivalence relation.

Question 7 Let R be a transitive and reflexive relation on A. Let T be a relation on A, such
that (a, b) is in T if and only if both (a, b) and (b, a) are in R. Show that T is an equivalence
relation.

Solution:
To prove that T is equivalence relation we need to prove T is reflexive, T is symmetric and T is
transitive.
Given that (a, b) ∈ T iff (a, b), (b, a) ∈ R
Clearly (a, a) ∈ T, ∀a ∈ A, This is true because R is transtive (reflexive). This proves that T is
reflexive.
If (a, b) ∈ T we need to prove that (b, a) ∈ T . By the hypothesis (given condition), it is easy to
see that (b, a) ∈ T . Hence T is symmetric.
If (a, b) ∈ T and (b, c) ∈ T , we need to prove that (a, c) ∈ T .
(a, b) ∈ T → (a, b), (b, a) ∈ R
(b, c) ∈ T → (b, c), (c, b) ∈ R
Since R is transitive (a, c) ∈ R and (c, a) ∈ R, this implies that (a, c) ∈ T . Hence T is transitive.
Therefore, T is an equivalence relation.

Question 8 Let R be a binary relation. Let S = {(a, b) | (a, c) ∈ R and (c, b) ∈ R for some c}.
Show that if R is an equivalence relation, then S is also an equivalence relation.

Solution:
To Prove: S is reflexive.
Since R is reflexive (a, a) ∈ R ∀a ∈ A. Clearly (a, a) ∈ S ∀a ∈ A. This proves that S is reflexive.
To prove:S is symmetric
(a, b) ∈ S → ∃x (a, x) ∈ R, (x, b) ∈ R
Since R is symmetric (x, a) ∈ R, (b, x) ∈ R.
Therefore by given definition, (b, a) ∈ S.
This proves that S is symmetric.
To prove: S is transitive
If (a, b) ∈ S and (b, c) ∈ S we need to prove that (a, c) ∈ S.
(a, b) ∈ S → ∃d (a, d), (d, b) ∈ R
R is symmetric → (d, a), (b, d) ∈ R
⇒ (a, b) ∈ R, (b, a) ∈ R
(b, c) ∈ S → ∃e (b, e), (e, c) ∈ R
R is symmetric ⇒ (e, b), (c, e) ∈ R
⇒ (b, c) ∈ R, (c, b) ∈ R
Since R is transitive, (a, c) ∈ R, (c, a) ∈ R ——(1)
Since R is reflexive, (c, c) ∈ R ——(2)
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From (1) and (2) it follows that (a, c) ∈ S

Therefore, S is transitive and hence an equivalence relation.

Question 9 Let R be a reflexive relation on a set A. Show that R is an equivalence relation if
and only if (a, b) and (a, c) are in R implies that (b, c) is in R.

Solution:
Necessity: Given that R is an equivalence relation, we need to prove that (a, b), (a, c) ∈ R →
(b, c) ∈ R
Since R is symmetric, (a, b) ∈ R⇒ (b, a) ∈ R
Since R is transitive, (b, a), (a, c) ∈ R⇒ (b, c) ∈ R
Hence necessity is proved.
Sufficiency: To show that R is an equivalence relation, we need to show that R is symmetric
and transitive.
By definition, (a, b), (a, c) ∈ R⇒ (b, c) ∈ R
Also (a, c), (a, b) ∈ R⇒ (c, b) ∈ R
Therefore, R is symmetric.
To prove transitivity, if (x, y), (y, z) ∈ R then (x, z) ∈ R
(x, y) ∈ R, (a, x)&(a, y) ∈ R
(y, z) ∈ R, (a, y)&(a, z) ∈ R
(a, x)&(a, z) ∈ R⇒ (x, z) ∈ R. Hence R is transitive.
Therefore R is an equivalence relation. Hence sufficiency is proved.

Question 10 Let A be a set with n elements. Using mathematical induction,

1. Prove that there are 2n unary relations on A.
2. Prove that there are 2n

2 binary relations on A.
3. How many ternary relations are there on A ?

Solution:

1. Let us prove this by induction on the number of elements in A, n.
Base Case: If n = 0 then, the number of relations is 20 = 1 (Empty set). If n = 1 then, the
number of unary relations is 2 = 21

2 (If A = {x} then, the unary relations on A = {φ, x})
Hypothesis: Assume that the statement is true for n = k, k ≥ 1
Induction Step: Let A be the set with n = k + 1 elements, k ≥ 1.
The number of unary relations on a set with k + 1 elements = Number of unary relations
on a set with k elements + 2k (∵ (k + 1)th element can be placed in each of 2k subsets of k
elements) = 2k + 2k = 2k+1.

2. Let us prove this by induction on the number of elements in A, n.
Base Case: If n = 0 then, the number of relations is 20 = 1 (Empty set). If n = 1 then, the
number of binary relations is 2 = 21

2 (If A = {x} then, A×A = {φ, (x, x)}).
Hypothesis: Assume that the statement is true for n = k, k ≥ 1
Induction Step: LetA be the set with n = k+1 elements, k ≥ 1. LetA = {x1, x2, . . . , xk, xk+1}
For k elements, the number of binary relations are 2k

2 . For (k + 1)th element, we have the
following 2k + 1 binary elements:
(x1, xk+1), (x2, xk+1), . . ., (xk, xk+1), (xk+1, x1), (xk+1, x2), . . ., (xk+1, xk), (xk+1, xk+1).
Therefore, number of binary relations for the set A = 2k

2
. 22k+1 = 2k

2+2k+1 = 2(k+1)2 .

3. Number of ternary relations on A = 2n
3
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