

Assignment 4.5 - Relations

Question 1 Let $A = \{1, 2\}$. Construct the set $\rho(A) \times A$, where $\rho(A)$ is the power set (set of all subsets) of A .

Solution:

$$A = \{1, 2\} ; \rho(A) = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$$

$$\rho(A) \times A = \{(\phi, 1), (\phi, 2), (\{1\}, 1), (\{1\}, 2), (\{2\}, 1), (\{2\}, 2), (\{1, 2\}, 1), (\{1, 2\}, 2)\}$$

Question 2 Given that $A \subseteq C$ and $B \subseteq D$, show that $A \times B \subseteq C \times D$.

Solution:

To show that $A \times B \subseteq C \times D$, consider any arbitrary pair $(a, b) \in A \times B$, where $a \in A, b \in B$.

$A \subseteq C \Rightarrow a \in C$ and $B \subseteq D \Rightarrow b \in D$. Thus, $(a, b) \in C \times D$.

It follows that $A \times B \subseteq C \times D$.

Question 3 Given that $A \times B \subseteq C \times D$, does it necessarily follow that $A \subseteq C$ and $B \subseteq D$?

Solution:

It is not necessary that if $A \times B \subseteq C \times D$ then, $A \subseteq C$ and $B \subseteq D$.

Counter example:

Let $A = \{1, 2\}, B = \phi, C = \{3\}$ and $D = \{4\}$

$$A \times B = \phi, C \times D = \{(3, 4)\}$$

Clearly, $A \times B \subseteq C \times D$ but $A \not\subseteq C$

Question 4 Is it possible that $A \subseteq A \times A$ for some set A ?

Solution:

Yes. If $A = \phi$ then $A \subseteq A \times A$.

Question 5 For each of the following check whether 'R' is Reflexive, Symmetric, Anti-symmetric, Transitive, an equivalence relation, a partial order.

1. $R = \{(a, b) \mid a - b \text{ is an odd positive integer}\}$.
2. $R = \{(a, b) \mid a = b^2 \text{ where } a, b \in I^+\}$.
3. Let P be the set of all people. Let R be a binary relation on P such that (a, b) is in R if a is a brother of b .
4. Let R be a binary relation on the set of all strings of 0's and 1's, such that
 $R = \{(a, b) \mid a \text{ and } b \text{ are strings that have same number of 0's}\}$.

Solution:

Q.No Reflexive Symmetric Anti-symmetric Transitive Equivalence Poset

1.	✗	✗	✓	✗	✗	✗
2.	✗	✗	✓	✗	✗	✗
3.	✗	✗	✗	✓	✗	✗
4.	✓	✓	✗	✓	✓	✗

Question 6 Let R be a symmetric and transitive relation on set A . Show that if for every ‘ a ’ in A there exists ‘ b ’ in A , such that (a, b) is in R , then R is an equivalence relation.

Solution:

Given: $\forall a \exists b (b \in A \wedge (a, b) \in R)$.

To prove: R is reflexive

Since R is symmetric, if $(a, b) \in R \Rightarrow (b, a) \in R$ and since R is transitive, $(a, b) \in R, (b, a) \in R \Rightarrow (a, a) \in R$ and this argument is true $\forall a \in A$. Therefore, R is reflexive. Hence R is an equivalence relation.

Question 7 Let R be a transitive and reflexive relation on A . Let T be a relation on A , such that (a, b) is in T if and only if both (a, b) and (b, a) are in R . Show that T is an equivalence relation.

Solution:

To prove that T is equivalence relation we need to prove T is reflexive, T is symmetric and T is transitive.

Given that $(a, b) \in T$ iff $(a, b), (b, a) \in R$

Clearly $(a, a) \in T, \forall a \in A$, This is true because R is transitive (reflexive). This proves that T is reflexive.

If $(a, b) \in T$ we need to prove that $(b, a) \in T$. By the hypothesis (given condition), it is easy to see that $(b, a) \in T$. Hence T is symmetric.

If $(a, b) \in T$ and $(b, c) \in T$, we need to prove that $(a, c) \in T$.

$(a, b) \in T \rightarrow (a, b), (b, a) \in R$

$(b, c) \in T \rightarrow (b, c), (c, b) \in R$

Since R is transitive $(a, c) \in R$ and $(c, a) \in R$, this implies that $(a, c) \in T$. Hence T is transitive. Therefore, T is an equivalence relation.

Question 8 Let R be a binary relation. Let $S = \{(a, b) \mid (a, c) \in R \text{ and } (c, b) \in R \text{ for some } c\}$. Show that if R is an equivalence relation, then S is also an equivalence relation.

Solution:

To Prove: S is reflexive.

Since R is reflexive $(a, a) \in R \forall a \in A$. Clearly $(a, a) \in S \forall a \in A$. This proves that S is reflexive.

To prove: S is symmetric

$(a, b) \in S \rightarrow \exists x (a, x) \in R, (x, b) \in R$

Since R is symmetric $(x, a) \in R, (b, x) \in R$.

Therefore by given definition, $(b, a) \in S$.

This proves that S is symmetric.

To prove: S is transitive

If $(a, b) \in S$ and $(b, c) \in S$ we need to prove that $(a, c) \in S$.

$(a, b) \in S \rightarrow \exists d (a, d), (d, b) \in R$

R is symmetric $\rightarrow (d, a), (b, d) \in R$

$\Rightarrow (a, b) \in R, (b, a) \in R$

$(b, c) \in S \rightarrow \exists e (b, e), (e, c) \in R$

R is symmetric $\Rightarrow (e, b), (c, e) \in R$

$\Rightarrow (b, c) \in R, (c, b) \in R$

Since R is transitive, $(a, c) \in R, (c, a) \in R$ ——(1)

Since R is reflexive, $(c, c) \in R$ ——(2)

From (1) and (2) it follows that $(a, c) \in S$

Therefore, S is transitive and hence an equivalence relation.

Question 9 Let R be a reflexive relation on a set A . Show that R is an equivalence relation if and only if (a, b) and (a, c) are in R implies that (b, c) is in R .

Solution:

Necessity: Given that R is an equivalence relation, we need to prove that $(a, b), (a, c) \in R \rightarrow (b, c) \in R$

Since R is symmetric, $(a, b) \in R \Rightarrow (b, a) \in R$

Since R is transitive, $(b, a), (a, c) \in R \Rightarrow (b, c) \in R$

Hence necessity is proved.

Sufficiency: To show that R is an equivalence relation, we need to show that R is symmetric and transitive.

By definition, $(a, b), (a, c) \in R \Rightarrow (b, c) \in R$

Also $(a, c), (a, b) \in R \Rightarrow (c, b) \in R$

Therefore, R is symmetric.

To prove transitivity, if $(x, y), (y, z) \in R$ then $(x, z) \in R$

$(x, y) \in R, (a, x) \& (a, y) \in R$

$(y, z) \in R, (a, y) \& (a, z) \in R$

$(a, x) \& (a, z) \in R \Rightarrow (x, z) \in R$. Hence R is transitive.

Therefore R is an equivalence relation. Hence sufficiency is proved.

Question 10 Let A be a set with n elements. Using mathematical induction,

1. Prove that there are 2^n unary relations on A .
2. Prove that there are 2^{n^2} binary relations on A .
3. How many ternary relations are there on A ?

Solution:

1. Let us prove this by induction on the number of elements in A , n .

Base Case: If $n = 0$ then, the number of relations is $2^0 = 1$ (Empty set). If $n = 1$ then, the number of unary relations is $2 = 2^{1^2}$ (If $A = \{x\}$ then, the unary relations on $A = \{\phi, x\}$)

Hypothesis: Assume that the statement is true for $n = k, k \geq 1$

Induction Step: Let A be the set with $n = k + 1$ elements, $k \geq 1$.

The number of unary relations on a set with $k + 1$ elements = Number of unary relations on a set with k elements + 2^k ($\because (k + 1)^{th}$ element can be placed in each of 2^k subsets of k elements) = $2^k + 2^k = 2^{k+1}$.

2. Let us prove this by induction on the number of elements in A , n .

Base Case: If $n = 0$ then, the number of relations is $2^0 = 1$ (Empty set). If $n = 1$ then, the number of binary relations is $2 = 2^{1^2}$ (If $A = \{x\}$ then, $A \times A = \{\phi, (x, x)\}$).

Hypothesis: Assume that the statement is true for $n = k, k \geq 1$

Induction Step: Let A be the set with $n = k + 1$ elements, $k \geq 1$. Let $A = \{x_1, x_2, \dots, x_k, x_{k+1}\}$ For k elements, the number of binary relations are 2^{k^2} . For $(k + 1)^{th}$ element, we have the following $2k + 1$ binary elements:

$(x_1, x_{k+1}), (x_2, x_{k+1}), \dots, (x_k, x_{k+1}), (x_{k+1}, x_1), (x_{k+1}, x_2), \dots, (x_{k+1}, x_k), (x_{k+1}, x_{k+1})$.
Therefore, number of binary relations for the set $A = 2^{k^2} \cdot 2^{2k+1} = 2^{k^2+2k+1} = 2^{(k+1)^2}$.

3. Number of ternary relations on $A = 2^{n^3}$