
Assignment 4 : Relations - Solutions

1. For the Hasse diagram given below; find maximal, minimal, greatest, least,
LB, glb, UB, lub for the subsets;
(i) {d, k, f}

Assignment 4 : Relations

1. For the Hasse diagram given below; find maximal, minimal, greatest, least,
LB, glb, UB, lub for the subsets;
(i) {d, k, f}

(ii) {b, h, f}
(iii) {d}
(iv) {a, b, c}
(v) {l,m}

2. Does there exist a binary relation R such that t(R) is infinite? Note: t(R)
is a transitive closure of R. Justify. Argue that if the underlying set is
finite, then the algorithm that computes t(R) terminates after finite steps.

3. Let R1 and R2 be relations on A. Prove or disprove; (i) t(R1 ∪ R2) ⊃
t(R1) ∪ t(R2) (ii) Converse of (i).

4. Note that Bell’s number (the number of equivalence relations) acts as a
powerful lower bound for the number of transitive relations. Present either
a lower bound (different from Bn) or an upper bound (different from 2n2

)
with a suitable justification. Present a good bound with a rich argument.

5. Argue that Bn ≤ 2n2

. Choose a suitable proof technique.

6. Present a Hasse diagram (or a poset) and an associated subset for each of
the following; you may choose to present a different Hasse diagram if you
wish so
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(ii) {b, h, f}
(iii) {d}
(iv) {a, b, c}
(v) {l,m}

Set Greatest Least Maximum Minimum UB LB LUB GLB
{d, k, f} {k} NIL {k} {d, f} {k, l,m} NIL {k} NIL
{b, h, f} NIL NIL {h, f} {b, f} {l,m} NIL {k} NIL
{d} {d} {d} {d} {d} {d, h, i, j, k, l,m} {d, a, b} {d} {d}
{a, b, c} NIL NIL {a, b, c} {a, b, c} {k, l,m} NIL {k} NIL
{l,m} NIL NIL {l,m} {l,m} NIL {a, b, c, d, e NIL {k}

, f, g, h, k}

2. Does there exist a binary relation R such that t(R) is infinite? Note: t(R)
is a transitive closure of R. Justify. Argue that if the underlying set is
finite, then the algorithm that computes t(R) terminates after finite steps.
Ans: Transitive closure of an infinite set is infinite. For proof, see Theo-
rem 7 of scribe. Let R be a relation with finite number of elements, say

|R| = n. Note that the transitive closure of R is t(R) =
n⋃

i=1

Ri. Since Ri

is finite for a fixed i, and could be computed in finite number of steps, it
follows that t(R) is also finite, and could be computed in finite number of
steps.

3. Let R1 and R2 be relations on A. Prove or disprove; (i) t(R1 ∪ R2) ⊃
t(R1) ∪ t(R2) (ii) Converse of (i).
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Ans: Let (a, b) ∈ t(R1). Note that either (a, b) ∈ R1 or there exist an
element c in the set such that (a, c), (c, b) ∈ R1. Observe that in both the
cases, (a, b) ∈ t(R1∪R2). Similar argument holds good with respect to the
relation R2. Thus we conclude that t(R1 ∪R2) ⊃ t(R1)∪ t(R2). Converse
is not true, which could be observed from the following example. Let A =
{1, 2}, R1 = {(1, 2)}, R2 = {(2, 1)}. Note that t(R1) = R1, t(R2) = R2,
t(R1∪R2) = {(1, 2), (2, 1), (1, 1), (2, 2)}. Thus t(R1∪R2) 6⊂ t(R1)∪ t(R2).

4. Note that Bell’s number (the number of equivalence relations) acts as a
powerful lower bound for the number of transitive relations. Present either
a lower bound (different from Bn) or an upper bound (different from 2n

2

)
with a suitable justification. Present a good bound with a rich argument.
Ans: All partial ordered relations are transitive realtions. Moreover, all
total ordered relations are partial order. The number of total ordered
relations on a set of size n is at most n!. Thus the number of transitive
relations is at least n!.

5. Argue that Bn ≤ 2n
2

. Choose a suitable proof technique.

Ans: Note that Bn =
n−1∑
k=0

(
n−1
k

)
Bn−1−k.

Proof by induction:
Base case: when n = 0, B0 = 1 ≤ 20.
Induction Hypothesis: for every k ≥ 0, let Bk ≤ 2k

2

.
Induction step: Consider Bk+1, k ≥ 0. From the definition,

Bk+1 =
k∑

i=0

(
k
i

)
Bk−i =

(
k
0

)
Bk +

(
k
1

)
Bk−1 + · · ·+

(
k
k

)
B0

≤ Bk(
(
k
0

)
+
(
k
1

)
+ · · ·+

(
k
k

)
)

≤ Bk2k. From induction hypothesis, Bk ≤ 2k
2

. Thus, Bk+1 ≤ 2k
2

2k

Bk+1 ≤ 2(k+1)2 .

6. Present a Hasse diagram (or a poset) and an associated subset for each of
the following; you may choose to present a different Hasse diagram if you
wish so

• a subset such that it has two maximal and two minimal elements.

• a subset such that it has a maximal element but no minimal elements.
Is it possible to find a such a subset if the underlying set is an infinite
set.

• a subset such that it has a lower bound but no greatest lower bound.
If such a subset is not possible, argue why?

• a subset such that it has an upper bound but no least upper bound.
If such a subset is not possible, argue why?

Ans: Conisder the following hasse diagram.
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Fig b

(i) In Fig b, for the subset {4, 6}, maximal elements are {4, 5} and minimal
elements are {4, 5}.
(ii) In Fig a, for the subset {3, 2, 1, . . .}, 3 is the maximal element.
(iii) In Fig b, consider the subset {4, 6}. Lower bounds are {2, 3}, however
there is no greatest lower bound.
(iv) In Fig b, consider the subset {4, 6}. Upper bounds are {5, 7}, however
there is no least upper bound.

7. Is there finite set such that it is a poset and totally ordered set but not a
well-ordered set. Justify.
Ans: (A,�) is a well order if (A,�) is a total order and for all A′ ⊆
A,A′ 6= φ,A′ has a least element. Thus all finite totally ordered sets are
well ordered.

8. How many different partial orders are possible on a set {1, . . . , n}. If not
a precise number, present a suitable lower bound or upper bound with a
justification.
Ans: All totally ordered relations are partial order. Since there are at
most n! totally ordered relations, there exists at least n! partial orders.
Note that there exists a hasse diagram corresponding to each partial order.
Moreover, if two partial orders are same then they have the same hasse
diagram. Thus the number of partial orders is precisely the number of
different hasse diagrams possible. Since hasse diagrams are all forests
(collection of trees), the total number of partial orders is the number of
different forests possible. Also we could come up with a lower bound on
the number of partial orders as the maximum number of labelled trees,
which is nn−2.
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