Discrete Mathematics - Assignment 111 Solutions

Proof by Mathematical Induction. (for questions 1-9)
1. Show that nC, nl
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Solution: Let us prove this by induction on n. As mentioned before,
we focus on n and do not care about r. Further, the proof works for any
.
Base Case: If n = 2 then, r = 1. The number of 1-size subsets on an
2—element set is 2. P(2) is true.
Hypothesis: Assume that, the statement is true for n, n > 2.
Induction Step: For n + 1, n > 2.
We know that (n +1)C, = n.,_, +ne,
By the induction hypothesis,
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Hence, Vn > 2, P(n + 1) is true if P(n) is true.

2. Show that there are 3" ternary strings.
Solution: Let us prove this statement by the mathematical induction on
the length of the string, n. A ternary string is a sequence of digits, where
each digit is either 0, 1, or 2.
Base Case: n = 1. There are three possibilities. Therefore, 3! = 3 ternary
strings exist of length one.
Hypothesis: Assume that the given statement is true for all n = k, k > 1.
i.e., there are 3 ternary strings of length k.
Induction Step: Let n=k+ 1,k > 1.
Let the string be ajas . ..agag4+1, where each a; € {0,1,2}.
By the hypothesis, ajas...a has got 3% possibilities and the position
ar4+1 has got three possibilities. In total, there are 3% - 3! possibilities. i.e.,
there are 3*+! ternary strings of length k -+ 1.

3. Show that in any group of n (n > 4) people there exist a pair of friends
or there exist three mutual enemies.

Solution:

Base Case: n = 4. All possibilities for a group four people are as fol-
lows.



Figure 1: Nodes denotes the people and the edge between two nodes says they
are friends.

Hypothesis: Assume that the statement is true for n = k, k > 4.
Induction Step: Let n = k+ 1,k > 4. By hypothesis, in any group of
k (k > 4) people there exist a pair of friends or there exist three mutual
enemies. Adding a person in this group will not affect the existing three
mutual enemies or a pair of friends. Hence proved.

4. Show that for every n, there are more than n prime numbers.
Solution:
Base case: n = 1. {2,3,...} are prime integers. Clearly, for the integer
’1’, there exist more than one.
Induction hypothesis: Assume for n = k, k > 1, that there exist more than
k prime integers. Let the prime numbers be p1,pa, ..., Pk, Dk+1 - - --
Induction step: We claim that for n = k+ 1, k > 1 there exist more than
k + 1 prime numbers. Consider the number P = py - p2...pk - Prt+1 + 1,
i.e. P is one plus the product of the prime numbers p1,ps, ..., Dr+1-
We consider the following cases to complete the proof.
Case a: If P is a prime number, then there exist more than k + 1 prime
numbers with (k + 2)"? prime number being P.
ie., {p1,p2,-.., Pk, Dr+1, P} are the set of (k + 2) prime numbers.
Case b: If P is not a prime number, then note that there exist a prime
factorization for P and none of {p1,pa, ..., Pk, Pr+1} are its prime factors.
This implies that there exist a prime factor py4o for P such that pgio # p;,
1 <i < k+ 1. Therefore, {p1,pa,.-., Dk, Pk+1,Pk+2} are prime numbers
with cardinality more than k + 1. The induction is complete and hence
the claim follows.

5. Show that (2)" < n!
Solution:
Base Case: The statement is true for n = 0.



Hypothesis: Assume that the statement is true for n = k, £ > 0. i.e.,
(5) <
Induction Step: Let n=k+ 1,k >0
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6. Show that for each integer n > 1, the nt" Fibonacci number F,, is less
than (%)".
Solution: The n** Fibonacci number is F,, = F,,_1 + Fy_o.
Base Case: n=2. Fy = Fi + Fy = 1+ 1 =2 < (12)® = 2.640625

Hypothesis: Assume that the statement is true for n = k, k > 2. i.e.,
Fy < (12)". This implies, Fy_1 + Fy_» < ()",
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Thus, F), is less than (—) for all n > 2.

7. For each integer n > 2, \f f +...+ ﬁ > /n
Solution:
Base Case: The statement is true for n = 2 (Since, — Vil
Hypothesis: Assume that the statement is true for n
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Induction Step: Let n=k+ 1,k > 2.
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8. (z +y) is a factor of the polynomial 22"+ 4 ¢2n+1,

Solution:

Base Case: n=0. (x + y) is a factor of the polynomial ! + 3!
Hypothesis: Assume that the statement is true for n = k, k > 1. i.e.,
(r +y) is a factor of the polynomial x2¥+1 4 ¢2k+1,

Induction Step: Let n=k+ 1,k >1
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(r +y) is a factor of (y?**1 4 22*+1) (by hypothesis) and also the fac-

tor of (y? — 22). It follows that, (x + y) is the factor of the polynomial
m2(k+1)+1 _|_y2(k+1)+1'

(2k+1) |

Hence, (x + y) is a factor of the polynomial x2"*1 4 ¢2n+1,

9. 11™*2 4 122n+1 ig divisible by 133.
Solution:
Base Case: n = 0. 112 + 12! = 133, which is divisible by 133.
Hypothesis: Assume that the statement is true for n = k, k& > 1. i.e.,
11%+2 4 122k+1 5 divisible by 133.
Induction Step: Let n=k+ 1,k > 1.

11(k+1)+2 _|_ 122(k+1)+1 11(k+2)+1 + 122k+1+2

— 11(k+2)+1 + 122k+1 3 122

= 11k+2DFL L q92k+1 (133 4 11)
= 11 (110F2) 4 192k+1) 4133 192kH!

(11+2) 1 122k+1) g divisible by 133 by the hypothesis. It follows that,
11- (110+2) £ 122k+1) 1133122k is divisible by 133. Thus, 11(*+1)+2 1
122(k+1)+1 g divisible by 133.

Hence, 11712 4 1227+ ig divisible by 133 for all n > 0.



10. A monkey is asked to climb up a ladder having n-steps. Each climb is

11.

12.

such that the monkey takes either one step or two steps. i.e., from Step-1,
it can go to Step-2 or Step-3. From a Step-i, it can go to Step-(i + 1)
or Step-(i + 2). In how many different ways can a monkey climb up the
ladder.

Solution:

The person can reach n'” stair from either (n—1)*" stair or from (n—2
stair. Let the total number of ways to reach n*" stair be ‘ways(n)’. Thus,
ways(n) = ways(n — 1) + ways(n — 2),n > 3 with the boundary cases
ways(l) = 1 (There is only one way to climb stair 1) and ways(2) = 2
(There are two ways to climb stair 2).
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(i) Present a precise bound and prove your answer using Mathematical
Induction. If you think obtaining a precise bound is challenging, then
present a meaningful lower bound and an upper bound, and prove
both of them.

Proof technique: your choice.

Solution:

(i) The given sequence is precisely the Fibonacci sequence. So, the
upper bound is as in Problem 6

(ii) Tight Bound: (1 4+ +/5)/2, Golden Ratio

(iii) Lower Bound: n

Show that /3 is irrational. (Hint: Proof by contradiction)

Solution:

On the contrary, assume that v/3 is rational, then v/3 = ¢ for some a,b € N
and b # 0. Note that, { is the simplest form.

a? is a multiple of 3 and hence, a is also a multiple of 3 (If @ is not a

multiple of 3, then a is of the form either 3k + 1 or 3k 4 2. Thus, a? is of
the form either 9k2 + 6k + 1 or 9k2 + 12k + 4, which is a contradiction to
our assumption that a? is a multiple of 3). So, assume that a = 3k, for
some k € N. Thus,

a? =30 = 9k? =3b* = 3k? =b> = b= 43k
Hence, b is also a multiple of 3. In this case § is not in simplest form,
which is a contradiction.

Suppose that the 10 integers 1,2, ...,10 are randomly positioned around
a circular wheel. Show that there are consecutive three numbers whose
sum is at least 17. (Hint: Proof by contradiction)

Solution: Proof by contradiction:

There are 10 triples of adjacent numbers with sums 53,53, ..., 51. If
each is less than 17, they all add up to at most 16 x 10 = 160. However,



in the latter sum each of the numbers 1,2,...,10 appears 3 times, so that
the sum must be at least 3 x 55 = 165 (55 = 14 2+ ... + 10), which is a
contradiction. It follows that our assumption is false.



