
Discrete Mathematics - Assignment III Solutions

Proof by Mathematical Induction. (for questions 1-9)

1. Show that nCr = n!
(n−r)!r! .

Solution: Let us prove this by induction on n. As mentioned before,
we focus on n and do not care about r. Further, the proof works for any
r.
Base Case: If n = 2 then, r = 1. The number of 1-size subsets on an
2−element set is 2. P (2) is true.
Hypothesis: Assume that, the statement is true for n, n ≥ 2.
Induction Step: For n + 1, n ≥ 2.
We know that (n + 1)Cr = ncr−1 + ncr

By the induction hypothesis,
= n!

(n−(r−1))!(r−1)! + n!
(n−r)!r!

= n!
(n−(r−1))(n−r)!(r−1)! + n!

(n−r)!r(r−1)!

= n!
(n−r)!(r−1)!

(
1

(n−(r−1)) + 1
r

)
= n!

(n−r)!(r−1)!

(
n+1

r(n−r+1)

)
= (n+1)n!

((n+1)−r)!r(r−1)!

= (n+1)!
((n+1)−r)!r!

Hence, ∀n ≥ 2, P (n + 1) is true if P (n) is true.

2. Show that there are 3n ternary strings.
Solution: Let us prove this statement by the mathematical induction on
the length of the string, n. A ternary string is a sequence of digits, where
each digit is either 0, 1, or 2.
Base Case: n = 1. There are three possibilities. Therefore, 31 = 3 ternary
strings exist of length one.
Hypothesis: Assume that the given statement is true for all n = k, k ≥ 1.
i.e., there are 3k ternary strings of length k.
Induction Step: Let n = k + 1, k ≥ 1.
Let the string be a1a2 . . . akak+1, where each ai ∈ {0, 1, 2}.
By the hypothesis, a1a2 . . . ak has got 3k possibilities and the position
ak+1 has got three possibilities. In total, there are 3k ·31 possibilities. i.e.,
there are 3k+1 ternary strings of length k + 1.

3. Show that in any group of n (n ≥ 4) people there exist a pair of friends
or there exist three mutual enemies.

Solution:

Base Case: n = 4. All possibilities for a group four people are as fol-
lows.
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Figure 1: Nodes denotes the people and the edge between two nodes says they
are friends.

Hypothesis: Assume that the statement is true for n = k, k ≥ 4.
Induction Step: Let n = k + 1, k ≥ 4. By hypothesis, in any group of
k (k ≥ 4) people there exist a pair of friends or there exist three mutual
enemies. Adding a person in this group will not affect the existing three
mutual enemies or a pair of friends. Hence proved.

4. Show that for every n, there are more than n prime numbers.
Solution:
Base case: n = 1. {2, 3, . . .} are prime integers. Clearly, for the integer
’1’, there exist more than one.
Induction hypothesis: Assume for n = k, k ≥ 1, that there exist more than
k prime integers. Let the prime numbers be p1, p2, . . . , pk, pk+1 . . ..
Induction step: We claim that for n = k + 1, k ≥ 1 there exist more than
k + 1 prime numbers. Consider the number P = p1 · p2 . . . pk · pk+1 + 1,
i.e. P is one plus the product of the prime numbers p1, p2, . . . , pk+1.
We consider the following cases to complete the proof.
Case a: If P is a prime number, then there exist more than k + 1 prime
numbers with (k + 2)nd prime number being P .
i.e., {p1, p2, . . . , pk, pk+1, P} are the set of (k + 2) prime numbers.
Case b: If P is not a prime number, then note that there exist a prime
factorization for P and none of {p1, p2, . . . , pk, pk+1} are its prime factors.
This implies that there exist a prime factor pk+2 for P such that pk+2 6= pi,
1 ≤ i ≤ k + 1. Therefore, {p1, p2, . . . , pk, pk+1, pk+2} are prime numbers
with cardinality more than k + 1. The induction is complete and hence
the claim follows.

5. Show that
(
n
e

)n ≤ n!
Solution:
Base Case: The statement is true for n = 0.
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Hypothesis: Assume that the statement is true for n = k, k ≥ 0. i.e.,(
k
e

)k ≤ k!.
Induction Step: Let n = k + 1, k ≥ 0

(k + 1)! ≥ (k + 1) ·
(
k

e

)k

(by hypothesis)

= (k + 1) ·
(

k

k + 1

)k

·
(
k + 1

e

)k

=

(
(k + 1)k+1

ek

)
· kk

(k + 1)k

≥
(

(k + 1)k+1

ek

)
· 1

e
(Since for any k,

(
1 +

1

k

)k

≤ e)

=

(
k + 1

e

)k+1

6. Show that for each integer n ≥ 1, the nth Fibonacci number Fn is less
than

(
13
8

)n
.

Solution: The nth Fibonacci number is Fn = Fn−1 + Fn−2.

Base Case: n = 2. F2 = F1 + F0 = 1 + 1 = 2 <
(
13
8

)2
= 2.640625

Hypothesis: Assume that the statement is true for n = k, k ≥ 2. i.e.,

Fk <
(
13
8

)k
. This implies, Fk−1 + Fk−2 <

(
13
8

)k
.

Fn = Fk+1 = Fk + Fk−1

= Fk−1 + Fk−2 + Fk−1

<

(
13

8

)k

+ Fk−1 (by hypothesis)

<

(
13

8

)k

+

(
13

8

)k−1

(by hypothesis)

=

(
13

8

)k−1 [
13

8
+ 1

]
<

(
13

8

)k−1 (
13

8

)2

=

(
13

8

)k+1

Thus, Fn is less than
(
13
8

)n
, for all n ≥ 2.

7. For each integer n ≥ 2, 1√
1

+ 1√
2

+ . . . + 1√
n
>
√
n

Solution:
Base Case: The statement is true for n = 2 (Since, 1√

1
+ 1√

2
>
√

2).

Hypothesis: Assume that the statement is true for n = k, k ≥ 2. i.e.,
1√
1

+ 1√
2

+ . . . + 1√
k
>
√
k
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Induction Step: Let n = k + 1, k ≥ 2.

1√
1

+
1√
2

+ . . . +
1√
k

+
1√
k + 1

>
√
k +

1√
k + 1

(by hypothesis)

=

√
k
√
k + 1 + 1√
k + 1

>

√
k
√
k + 1√

k + 1

=
k + 1√
k + 1

=
√
k + 1

8. (x + y) is a factor of the polynomial x2n+1 + y2n+1.
Solution:
Base Case: n = 0. (x + y) is a factor of the polynomial x1 + y1

Hypothesis: Assume that the statement is true for n = k, k ≥ 1. i.e.,
(x + y) is a factor of the polynomial x2k+1 + y2k+1.
Induction Step: Let n = k + 1, k ≥ 1

x2(k+1)+1 + y2(k+1)+1 = x(2k+1)+2 + y(2k+1)+2

= x(2k+1) · x2 + y(2k+1) · y2

= x(2k+1) · x2 + y(2k+1) · y2 + y(2k+1) · x2 − y(2k+1) · x2

= y(2k+1)(y2 − x2) + x2(y(2k+1) + x(2k+1))

(x + y) is a factor of (y2k+1 + x2k+1) (by hypothesis) and also the fac-
tor of (y2 − x2). It follows that, (x + y) is the factor of the polynomial
x2(k+1)+1 + y2(k+1)+1.

Hence, (x + y) is a factor of the polynomial x2n+1 + y2n+1.

9. 11n+2 + 122n+1 is divisible by 133.
Solution:
Base Case: n = 0. 112 + 121 = 133, which is divisible by 133.
Hypothesis: Assume that the statement is true for n = k, k ≥ 1. i.e.,
11k+2 + 122k+1 is divisible by 133.
Induction Step: Let n = k + 1, k ≥ 1.

11(k+1)+2 + 122(k+1)+1 = 11(k+2)+1 + 122k+1+2

= 11(k+2)+1 + 122k+1 · 122

= 11(k+2)+1 + 122k+1 · (133 + 11)

= 11 · (11(k+2) + 122k+1) + 133 · 122k+1

(11(k+2) + 122k+1) is divisible by 133 by the hypothesis. It follows that,
11 · (11(k+2) + 122k+1) + 133 ·122k+1 is divisible by 133. Thus, 11(k+1)+2 +
122(k+1)+1 is divisible by 133.

Hence, 11n+2 + 122n+1 is divisible by 133 for all n ≥ 0.
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10. A monkey is asked to climb up a ladder having n-steps. Each climb is
such that the monkey takes either one step or two steps. i.e., from Step-1,
it can go to Step-2 or Step-3. From a Step-i, it can go to Step-(i + 1)
or Step-(i + 2). In how many different ways can a monkey climb up the
ladder.
Solution:
The person can reach nth stair from either (n−1)th stair or from (n−2)th

stair. Let the total number of ways to reach nth stair be ‘ways(n)’. Thus,
ways(n) = ways(n − 1) + ways(n − 2), n ≥ 3 with the boundary cases
ways(1) = 1 (There is only one way to climb stair 1) and ways(2) = 2
(There are two ways to climb stair 2).

(i) Present a precise bound and prove your answer using Mathematical
Induction. If you think obtaining a precise bound is challenging, then
present a meaningful lower bound and an upper bound, and prove
both of them.

Proof technique: your choice.
Solution:
(i) The given sequence is precisely the Fibonacci sequence. So, the
upper bound is as in Problem 6
(ii) Tight Bound: (1 +

√
5)/2, Golden Ratio

(iii) Lower Bound: n

11. Show that
√

3 is irrational. (Hint: Proof by contradiction)
Solution:
On the contrary, assume that

√
3 is rational, then

√
3 = a

b for some a, b ∈ N
and b 6= 0. Note that, a

b is the simplest form.

√
3 = a

b

⇒ 3 = a2

b2

⇒ a2 = 3 · b2

a2 is a multiple of 3 and hence, a is also a multiple of 3 (If a is not a
multiple of 3, then a is of the form either 3k + 1 or 3k + 2. Thus, a2 is of
the form either 9k2 + 6k + 1 or 9k2 + 12k + 4, which is a contradiction to
our assumption that a2 is a multiple of 3). So, assume that a = 3k, for
some k ∈ N. Thus,

a2 = 3 · b2 ⇒ 9k2 = 3b2 ⇒ 3k2 = b2 ⇒ b = ±3k

Hence, b is also a multiple of 3. In this case a
b is not in simplest form,

which is a contradiction.

12. Suppose that the 10 integers 1, 2, . . . , 10 are randomly positioned around
a circular wheel. Show that there are consecutive three numbers whose
sum is at least 17. (Hint: Proof by contradiction)
Solution: Proof by contradiction:
There are 10 triples of adjacent numbers with sums S1, S2, . . . , S10. If
each is less than 17, they all add up to at most 16× 10 = 160. However,

5



in the latter sum each of the numbers 1, 2, . . . , 10 appears 3 times, so that
the sum must be at least 3× 55 = 165 (55 = 1 + 2 + ... + 10), which is a
contradiction. It follows that our assumption is false.
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